Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
FlexiBO: A Decoupled Cost-Aware Multi-Objective...
Search
Pooyan Jamshidi
February 29, 2024
Science
0
100
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
AAAI 2024
Pooyan Jamshidi
February 29, 2024
Tweet
Share
More Decks by Pooyan Jamshidi
See All by Pooyan Jamshidi
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
120
Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems
pjamshidi
0
130
Learning from Valerie Issarny: Insights Gained from Program Co-Chairing SEAMS’23
pjamshidi
0
250
Artificial Intelligence and Systems Laboratory (AISys): A Research Overview
pjamshidi
0
560
Experiential Learning by Building Real-World AI Systems
pjamshidi
0
200
Understanding and Explaining the Root Causes of Performance Faults with Causal AI: A Path towards Building Dependable Computer Systems
pjamshidi
0
150
On Debugging the Performance of Configurable Software Systems: Developer Needs and Tailored Tool Support
pjamshidi
0
240
Unicorn: Reasoning about Configurable System Performance through the Lens of Causality
pjamshidi
0
430
Causal AI for Systems
pjamshidi
0
290
Other Decks in Science
See All in Science
Celebrate UTIG: Staff and Student Awards 2024
utig
0
580
Causal discovery based on non-Gaussianity and nonlinearity
sshimizu2006
0
230
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
860
いまAI組織が求める企画開発エンジニアとは?
roadroller
2
1.4k
応用心理学Ⅰテキストマイニング講義資料講義編(2024年度)
satocos135
0
100
証明支援系LEANに入門しよう
unaoya
0
630
Healthcare Innovation through Business Entrepreneurship
clintwinters
0
190
統計学入門講座 第1回スライド
techmathproject
0
220
How were Quaternion discovered
kinakomoti321
2
1.2k
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
300
SciPyDataJapan 2025
schwalbe10
0
130
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
130
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Fashionably flexible responsive web design (full day workshop)
malarkey
406
66k
Building Flexible Design Systems
yeseniaperezcruz
328
38k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
Why You Should Never Use an ORM
jnunemaker
PRO
55
9.2k
A better future with KSS
kneath
238
17k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
The Cult of Friendly URLs
andyhume
78
6.2k
A Modern Web Designer's Workflow
chriscoyier
693
190k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
Transcript
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
Shahriar Iqbal, Jianhai Su, Lars Kotthoff, Pooyan Jamshidi
[email protected]
AAAI, 24 February 2024 1
One Size Does Not Fit All 1 1.5 2 2.5
3 3.5 ·104 15 20 25 30 35 40 Energy Consumption (mJ) Prediction Error (%) Xception ← Energy consumption varies 4 × → ← Prediction Error varies 3 × → 2
Heterogeneous Parameters Num of Filters, Filter Size, Learning Rate, Num
of Epochs DN N Design Compiler Hardware Deployment Num of Active CPUs, CPU/ GPU/ EMC Frequency Cloud, IoT, Edge Num of Threads, GPU Threads, Memory Growth 3
Cost-Unaware Methods Waste Resources Coupled Unaware Pareto Optimal Prediction Error
(%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 Decoupled Aware Pareto Optimal Prediction Error (%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 4
Proposed Method ▷ weight expected benefit of evaluation by cost
▷ choose which objective(s) to evaluate ▷ more efficient use of resources – lower cost, more evaluations 5
Results – Computer Vision 0 50 100 150 200 Cumulative
Log WallClock Time 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10000 15000 20000 25000 Energy Consumption (mJ) 15 20 25 30 35 40 Prediction Error (%) Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 6
Results – NLP 0 50 100 150 200 Cumulative Log
WallClock Time 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 70000 80000 90000 Energy Consumption (mJ) 20 25 30 35 Prediction Error (%) BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 7
Results – Speech Recognition 0 50 100 150 200 250
300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 8
Results – Evaluations 0 20 40 60 80 100 120
140 160 180 200 PAL 0 20 40 60 80 100 120 140 160 180 200 PESMO-DEC 2 4 6 8 0 20 40 60 80 100 120 140 160 180 200 Iteration CA-MOBO 0 20 40 60 80 100 120 140 160 180 200 Iteration FlexiBO 2 4 6 8 9
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
▷ cost-aware acquisition function decreases cost and improves results ▷ code available at https://github.com/softsys4ai/FlexiBO 0 50 100 150 200 250 300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10