Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
FlexiBO: A Decoupled Cost-Aware Multi-Objective...
Search
Pooyan Jamshidi
February 29, 2024
Science
0
160
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
AAAI 2024
Pooyan Jamshidi
February 29, 2024
Tweet
Share
More Decks by Pooyan Jamshidi
See All by Pooyan Jamshidi
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
200
Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems
pjamshidi
0
210
Learning from Valerie Issarny: Insights Gained from Program Co-Chairing SEAMS’23
pjamshidi
0
390
Artificial Intelligence and Systems Laboratory (AISys): A Research Overview
pjamshidi
0
750
Experiential Learning by Building Real-World AI Systems
pjamshidi
0
240
Understanding and Explaining the Root Causes of Performance Faults with Causal AI: A Path towards Building Dependable Computer Systems
pjamshidi
0
190
On Debugging the Performance of Configurable Software Systems: Developer Needs and Tailored Tool Support
pjamshidi
0
290
Unicorn: Reasoning about Configurable System Performance through the Lens of Causality
pjamshidi
0
470
Causal AI for Systems
pjamshidi
0
330
Other Decks in Science
See All in Science
会社でMLモデルを作るとは @電気通信大学 データアントレプレナーフェロープログラム
yuto16
1
450
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
460
20251212_LT忘年会_データサイエンス枠_新川.pdf
shinpsan
0
180
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
People who frequently use ChatGPT for writing tasks are accurate and robust detectors of AI-generated text
rudorudo11
0
170
Algorithmic Aspects of Quiver Representations
tasusu
0
130
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
21k
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
290
baseballrによるMLBデータの抽出と階層ベイズモデルによる打率の推定 / TokyoR118
dropout009
2
640
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
290
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
140
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
Featured
See All Featured
How to train your dragon (web standard)
notwaldorf
97
6.4k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
The Limits of Empathy - UXLibs8
cassininazir
1
190
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
26
The Language of Interfaces
destraynor
162
25k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
Building a Scalable Design System with Sketch
lauravandoore
463
34k
Paper Plane
katiecoart
PRO
0
44k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
68
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
99
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
31
Transcript
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
Shahriar Iqbal, Jianhai Su, Lars Kotthoff, Pooyan Jamshidi
[email protected]
AAAI, 24 February 2024 1
One Size Does Not Fit All 1 1.5 2 2.5
3 3.5 ·104 15 20 25 30 35 40 Energy Consumption (mJ) Prediction Error (%) Xception ← Energy consumption varies 4 × → ← Prediction Error varies 3 × → 2
Heterogeneous Parameters Num of Filters, Filter Size, Learning Rate, Num
of Epochs DN N Design Compiler Hardware Deployment Num of Active CPUs, CPU/ GPU/ EMC Frequency Cloud, IoT, Edge Num of Threads, GPU Threads, Memory Growth 3
Cost-Unaware Methods Waste Resources Coupled Unaware Pareto Optimal Prediction Error
(%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 Decoupled Aware Pareto Optimal Prediction Error (%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 4
Proposed Method ▷ weight expected benefit of evaluation by cost
▷ choose which objective(s) to evaluate ▷ more efficient use of resources – lower cost, more evaluations 5
Results – Computer Vision 0 50 100 150 200 Cumulative
Log WallClock Time 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10000 15000 20000 25000 Energy Consumption (mJ) 15 20 25 30 35 40 Prediction Error (%) Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 6
Results – NLP 0 50 100 150 200 Cumulative Log
WallClock Time 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 70000 80000 90000 Energy Consumption (mJ) 20 25 30 35 Prediction Error (%) BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 7
Results – Speech Recognition 0 50 100 150 200 250
300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 8
Results – Evaluations 0 20 40 60 80 100 120
140 160 180 200 PAL 0 20 40 60 80 100 120 140 160 180 200 PESMO-DEC 2 4 6 8 0 20 40 60 80 100 120 140 160 180 200 Iteration CA-MOBO 0 20 40 60 80 100 120 140 160 180 200 Iteration FlexiBO 2 4 6 8 9
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
▷ cost-aware acquisition function decreases cost and improves results ▷ code available at https://github.com/softsys4ai/FlexiBO 0 50 100 150 200 250 300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10