Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
FlexiBO: A Decoupled Cost-Aware Multi-Objective...
Search
Pooyan Jamshidi
February 29, 2024
Science
0
84
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
AAAI 2024
Pooyan Jamshidi
February 29, 2024
Tweet
Share
More Decks by Pooyan Jamshidi
See All by Pooyan Jamshidi
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
81
Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems
pjamshidi
0
100
Learning from Valerie Issarny: Insights Gained from Program Co-Chairing SEAMS’23
pjamshidi
0
200
Artificial Intelligence and Systems Laboratory (AISys): A Research Overview
pjamshidi
0
490
Experiential Learning by Building Real-World AI Systems
pjamshidi
0
180
Understanding and Explaining the Root Causes of Performance Faults with Causal AI: A Path towards Building Dependable Computer Systems
pjamshidi
0
130
On Debugging the Performance of Configurable Software Systems: Developer Needs and Tailored Tool Support
pjamshidi
0
220
Unicorn: Reasoning about Configurable System Performance through the Lens of Causality
pjamshidi
0
410
Causal AI for Systems
pjamshidi
0
280
Other Decks in Science
See All in Science
Boil Order
uni_of_nomi
0
120
Introduction to Graph Neural Networks
joisino
PRO
4
2.1k
トラブルがあったコンペに学ぶデータ分析
tereka114
2
890
Machine Learning for Materials (Lecture 7)
aronwalsh
0
810
Sociovirology
uni_of_nomi
0
100
証明支援系LEANに入門しよう
unaoya
0
350
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
100
LIMEを用いた判断根拠の可視化
kentaitakura
0
340
最適化超入門
tkm2261
14
3.3k
ほたるのひかり/RayTracingCamp10
kugimasa
0
210
構造設計のための3D生成AI-最新の取り組みと今後の展開-
kojinishiguchi
0
550
Machine Learning for Materials (Lecture 8)
aronwalsh
0
410
Featured
See All Featured
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Testing 201, or: Great Expectations
jmmastey
38
7.1k
Ruby is Unlike a Banana
tanoku
97
11k
The World Runs on Bad Software
bkeepers
PRO
65
11k
It's Worth the Effort
3n
183
27k
Producing Creativity
orderedlist
PRO
341
39k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Adopting Sorbet at Scale
ufuk
73
9.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
8
740
jQuery: Nuts, Bolts and Bling
dougneiner
61
7.5k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Rails Girls Zürich Keynote
gr2m
94
13k
Transcript
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
Shahriar Iqbal, Jianhai Su, Lars Kotthoff, Pooyan Jamshidi
[email protected]
AAAI, 24 February 2024 1
One Size Does Not Fit All 1 1.5 2 2.5
3 3.5 ·104 15 20 25 30 35 40 Energy Consumption (mJ) Prediction Error (%) Xception ← Energy consumption varies 4 × → ← Prediction Error varies 3 × → 2
Heterogeneous Parameters Num of Filters, Filter Size, Learning Rate, Num
of Epochs DN N Design Compiler Hardware Deployment Num of Active CPUs, CPU/ GPU/ EMC Frequency Cloud, IoT, Edge Num of Threads, GPU Threads, Memory Growth 3
Cost-Unaware Methods Waste Resources Coupled Unaware Pareto Optimal Prediction Error
(%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 Decoupled Aware Pareto Optimal Prediction Error (%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 4
Proposed Method ▷ weight expected benefit of evaluation by cost
▷ choose which objective(s) to evaluate ▷ more efficient use of resources – lower cost, more evaluations 5
Results – Computer Vision 0 50 100 150 200 Cumulative
Log WallClock Time 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10000 15000 20000 25000 Energy Consumption (mJ) 15 20 25 30 35 40 Prediction Error (%) Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 6
Results – NLP 0 50 100 150 200 Cumulative Log
WallClock Time 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 70000 80000 90000 Energy Consumption (mJ) 20 25 30 35 Prediction Error (%) BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 7
Results – Speech Recognition 0 50 100 150 200 250
300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 8
Results – Evaluations 0 20 40 60 80 100 120
140 160 180 200 PAL 0 20 40 60 80 100 120 140 160 180 200 PESMO-DEC 2 4 6 8 0 20 40 60 80 100 120 140 160 180 200 Iteration CA-MOBO 0 20 40 60 80 100 120 140 160 180 200 Iteration FlexiBO 2 4 6 8 9
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
▷ cost-aware acquisition function decreases cost and improves results ▷ code available at https://github.com/softsys4ai/FlexiBO 0 50 100 150 200 250 300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10