Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
FlexiBO: A Decoupled Cost-Aware Multi-Objective...
Search
Pooyan Jamshidi
February 29, 2024
Science
0
140
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
AAAI 2024
Pooyan Jamshidi
February 29, 2024
Tweet
Share
More Decks by Pooyan Jamshidi
See All by Pooyan Jamshidi
Reconciling Accuracy, Cost, and Latency of Inference Serving Systems
pjamshidi
0
170
Reconciling High Accuracy, Cost-Efficiency, and Low Latency of Inference Serving Systems
pjamshidi
0
180
Learning from Valerie Issarny: Insights Gained from Program Co-Chairing SEAMS’23
pjamshidi
0
340
Artificial Intelligence and Systems Laboratory (AISys): A Research Overview
pjamshidi
0
650
Experiential Learning by Building Real-World AI Systems
pjamshidi
0
220
Understanding and Explaining the Root Causes of Performance Faults with Causal AI: A Path towards Building Dependable Computer Systems
pjamshidi
0
180
On Debugging the Performance of Configurable Software Systems: Developer Needs and Tailored Tool Support
pjamshidi
0
270
Unicorn: Reasoning about Configurable System Performance through the Lens of Causality
pjamshidi
0
460
Causal AI for Systems
pjamshidi
0
320
Other Decks in Science
See All in Science
Explanatory material
yuki1986
0
380
Cross-Media Information Spaces and Architectures (CISA)
signer
PRO
3
31k
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
310
データベース03: 関係データモデル
trycycle
PRO
1
240
2025-06-11-ai_belgium
sofievl
1
140
CV_5_3dVision
hachama
0
140
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
140
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
280
データベース01: データベースを使わない世界
trycycle
PRO
1
750
Transport information Geometry: Current and Future II
lwc2017
0
170
オンプレミス環境にKubernetesを構築する
koukimiura
0
300
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
70
11k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
21k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.5k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
Side Projects
sachag
455
43k
Measuring & Analyzing Core Web Vitals
bluesmoon
8
540
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
44
2.4k
Transcript
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
Shahriar Iqbal, Jianhai Su, Lars Kotthoff, Pooyan Jamshidi larsko@uwyo.edu AAAI, 24 February 2024 1
One Size Does Not Fit All 1 1.5 2 2.5
3 3.5 ·104 15 20 25 30 35 40 Energy Consumption (mJ) Prediction Error (%) Xception ← Energy consumption varies 4 × → ← Prediction Error varies 3 × → 2
Heterogeneous Parameters Num of Filters, Filter Size, Learning Rate, Num
of Epochs DN N Design Compiler Hardware Deployment Num of Active CPUs, CPU/ GPU/ EMC Frequency Cloud, IoT, Edge Num of Threads, GPU Threads, Memory Growth 3
Cost-Unaware Methods Waste Resources Coupled Unaware Pareto Optimal Prediction Error
(%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 Decoupled Aware Pareto Optimal Prediction Error (%) Log Wall Clock Time Energy Consumption (mJ) 3000 6000 9000 12000 15 25 35 45 3.65 3.50 3.35 4
Proposed Method ▷ weight expected benefit of evaluation by cost
▷ choose which objective(s) to evaluate ▷ more efficient use of resources – lower cost, more evaluations 5
Results – Computer Vision 0 50 100 150 200 Cumulative
Log WallClock Time 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10000 15000 20000 25000 Energy Consumption (mJ) 15 20 25 30 35 40 Prediction Error (%) Xception PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 6
Results – NLP 0 50 100 150 200 Cumulative Log
WallClock Time 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 70000 80000 90000 Energy Consumption (mJ) 20 25 30 35 Prediction Error (%) BERT-SQuAD PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 7
Results – Speech Recognition 0 50 100 150 200 250
300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 8
Results – Evaluations 0 20 40 60 80 100 120
140 160 180 200 PAL 0 20 40 60 80 100 120 140 160 180 200 PESMO-DEC 2 4 6 8 0 20 40 60 80 100 120 140 160 180 200 Iteration CA-MOBO 0 20 40 60 80 100 120 140 160 180 200 Iteration FlexiBO 2 4 6 8 9
FlexiBO: A Decoupled Cost-Aware Multi-Objective Optimization of Deep Neural Networks
▷ cost-aware acquisition function decreases cost and improves results ▷ code available at https://github.com/softsys4ai/FlexiBO 0 50 100 150 200 250 300 Cumulative Log WallClock Time 0.25 0.30 0.35 0.40 0.45 0.50 0.55 Hypervolume Error DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 20000 30000 40000 50000 60000 Energy Consumption (mJ) 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 Prediction Error (%) DeepSpeech PAL PESMO ParEGO SMSEGO CA-MOBO PESMO-DEC FLEXIBO-GPLC 10