Upgrade to Pro — share decks privately, control downloads, hide ads and more …

On Debugging the Performance of Configurable Software Systems: Developer Needs and Tailored Tool Support

On Debugging the Performance of Configurable Software Systems: Developer Needs and Tailored Tool Support

Pooyan Jamshidi

May 26, 2022
Tweet

More Decks by Pooyan Jamshidi

Other Decks in Research

Transcript

  1. On Debugging the Performance of
    Configurable Software Systems
    Miguel Velez
    (CMU -> Google)
    Norbert Siegmund
    (Leipzig)
    Pooyan Jamshidi
    (UofSC & Google)
    Sven Apel
    (Saarland)
    Christian Kästner
    (CMU)
    Developer Needs and Tailored Tool Support

    View Slide

  2. Most software is
    con
    fi
    gurable

    View Slide

  3. Indexing Encryption Compression Logging
    Core functionality
    Configurable System
    Need: Need: Need:

    View Slide

  4. Indexing Encryption Compression Logging
    Core functionality
    Configurable System

    View Slide

  5. View Slide

  6. 6
    Performance Execution time
    Energy consumption Operational costs

    View Slide

  7. Developer
    • Design, implement, and maintain efficient software
    • Debug surprising performance behaviors

    View Slide

  8. 8
    59% - Con
    fi
    guration-related performance issues
    61% - Average
    fi
    x time of 5 weeks
    50% - Con
    fi
    guration-related patches

    View Slide

  9. View Slide

  10. Traditional Off-the-Shelf Profilers

    View Slide

  11. Searching Inefficient Coding Patterns

    View Slide

  12. Program Debugging Techniques
    12

    View Slide

  13. 13

    View Slide

  14. 14
    Limited empirical evidence of the
    usefulness to help debug the
    performance of con
    fi
    gurable systems

    View Slide

  15. 15

    View Slide

  16. 16

    View Slide

  17. Developer
    • Understand how options affect performance
    • Design, implement, and maintain efficient software
    Help developers debug the performance
    of configurable software systems

    View Slide

  18. Help developers debug the performance
    of configurable software systems

    View Slide

  19. Identify Information Needs
    Influencing Options Option Hotspots Cause-Effect Chain
    Help developers debug the performance
    of configurable software systems

    View Slide

  20. Identify Information Needs
    Influencing Options Option Hotspots Cause-Effect Chain
    Help developers debug the performance
    of configurable software systems
    Tailor Ingredients
    CPU Profiling Program Slicing
    Performance Modeling
    Global Local

    View Slide

  21. View Slide

  22. 22
    User Study to Identify Information Needs

    View Slide

  23. 23
    User Study to Identify Information Needs
    Overview of Ingredients

    View Slide

  24. 24
    User Study to Identify Information Needs
    Overview of Ingredients
    Tailor and Evaluate Ingredients

    View Slide

  25. 25
    Overview of Ingredients
    Tailor and Evaluate Ingredients
    User Study to Identify Information Needs

    View Slide

  26. Information Needs
    RQ1: What information do developers look for when
    debugging the performance of con
    fi
    gurable systems?
    RQ2: What is the process that developers follow and the
    activities that they perform to obtain this information?

    View Slide

  27. Information Needs
    RQ1: What information do developers look for when
    debugging the performance of con
    fi
    gurable systems?
    RQ2: What is the process that developers follow and the
    activities that they perform to obtain this information?
    Exploratory User Study

    View Slide

  28. Exploratory User Study

    View Slide

  29. Exploratory User Study
    Influencing Options
    The option or interaction causing the unexpected
    performance behavior

    View Slide

  30. Exploratory User Study
    Influencing Options Option Hotspots
    The methods where options affect the performance of
    the system

    View Slide

  31. Exploratory User Study
    Influencing Options Option Hotspots Cause-Effect Chain
    How in
    fl
    uencing options are used in the implementation
    to directly and indirectly affect the performance of
    option hotspots

    View Slide

  32. Exploratory User Study
    Influencing Options Option Hotspots Cause-Effect Chain
    Compared problematic con
    fi
    guration to a
    non-problematic con
    fi
    guration

    View Slide

  33. View Slide

  34. User Study to Identify Information Needs
    Influencing Options Option Hotspots Cause-Effect Chain
    Help developers debug the performance
    of configurable software systems

    View Slide

  35. 35
    Tailor and Evaluate Ingredients
    User Study to Identify Information Needs
    Overview of Ingredients

    View Slide

  36. The option or interaction causing the unexpected
    performance behavior
    Influencing Options

    View Slide

  37. The option or interaction causing the unexpected
    performance behavior
    Influencing Options
    Global Performance-In
    fl
    uence Models

    View Slide


  38. 23 seconds
    28 seconds
    20 seconds
    Con
    fi
    gurations Performance
    T = 25 + 3· - 5· + 9· ·
    Performance-Influence Models

    View Slide


  39. 23 seconds
    28 seconds
    20 seconds
    Con
    fi
    gurations Performance
    T = 25 + 3· - 5· + 9· ·
    Performance-Influence Models

    View Slide


  40. 23 seconds
    28 seconds
    20 seconds
    Con
    fi
    gurations Performance
    T = 25 + 3· - 5· + 9· ·
    Performance-Influence Models

    View Slide

  41. Modeling
    Global
    T = 25 + 3· - 5· + 9· ·
    Influencing Options

    View Slide

  42. The methods where options affect the performance of
    the system
    Option Hotspots

    View Slide

  43. The methods where options affect the performance of
    the system
    Option Hotspots
    Local Performance-In
    fl
    uence Models

    View Slide

  44. Modeling
    Local
    Tfoo = 5 + 3· + 9· ·
    Option Hotspots

    View Slide

  45. How in
    fl
    uencing options are used in the implementation
    to directly and indirectly affect the performance of
    option hotspots
    Cause-Effect Chain

    View Slide

  46. How in
    fl
    uencing options are used in the implementation
    to directly and indirectly affect the performance of
    option hotspots
    Cause-Effect Chain
    CPU Pro
    fi
    ling & Program Slicing

    View Slide

  47. CPU Profiling
    Cause-Effect Chain

    View Slide

  48. Program Slicing
    Cause-Effect Chain

    View Slide

  49. Overview of Ingredients
    Influencing Options Option Hotspots Cause-Effect Chain
    Help developers debug the performance
    of configurable software systems
    CPU Profiling Program Slicing
    Modeling
    Global Local

    View Slide

  50. 50
    User Study to Identify Information Needs
    Overview of Ingredients
    Tailor and Evaluate Ingredients

    View Slide

  51. Influencing Options Option Hotspots Cause-Effect Chain
    CPU Profiling Program Slicing
    Performance Modeling
    Global Local

    View Slide

  52. Influencing Options Option Hotspots Cause-Effect Chain
    CPU Profiling Program Slicing
    Performance Modeling
    Global Local
    Information Providers

    View Slide

  53. Influencing Options
    Performance Modeling
    Global

    View Slide

  54. Influencing Options
    Performance Modeling
    Global

    View Slide

  55. Influencing Options
    Performance Modeling
    Global

    View Slide

  56. Influencing Options
    Performance Modeling
    Global

    View Slide

  57. Influencing Options
    Performance Modeling
    Global

    View Slide

  58. Option Hotspots
    Performance Modeling
    Local

    View Slide

  59. Option Hotspots
    Performance Modeling
    Local

    View Slide

  60. Option Hotspots
    Performance Modeling
    Local

    View Slide

  61. Option Hotspots
    Performance Modeling
    Local

    View Slide

  62. Cause-Effect Chain
    CPU Profiling Program Slicing

    View Slide

  63. Cause-Effect Chain
    CPU Profiling

    View Slide

  64. Cause-Effect Chain
    CPU Profiling

    View Slide

  65. Cause-Effect Chain
    CPU Profiling

    View Slide

  66. Cause-Effect Chain
    CPU Profiling

    View Slide

  67. Cause-Effect Chain
    CPU Profiling

    View Slide

  68. Cause-Effect Chain
    Program Slicing

    View Slide

  69. Main.main(…)
    Cursor.put(…)
    Main.init(…)
    Database.init(…)
    def init(Database db)
    Database.checkForNullParam(db.name, "dbName");
    Log.msg(Level.INFO, "db " + db.name + " open");
    ...
    if(db.replicated)
    configReplicated(...);
    ...
    this.cacheMode = db.cacheMode;
    this.commit = db.trans ? true : false;
    this.sync = db.dups ? true : false;
    if(db.evict)
    Evictor.init(db.evictorThreads);
    ...
    Cause-Effect Chain
    Program Slicing

    View Slide

  70. Main.main(…)
    Cursor.put(…)
    Main.init(…)
    Database.init(…)
    def init(Database db)
    Database.checkForNullParam(db.name, "dbName");
    Log.msg(Level.INFO, "db " + db.name + " open");
    ...
    if(db.replicated)
    configReplicated(...);
    ...
    this.cacheMode = db.cacheMode;
    this.commit = db.trans ? true : false;
    this.sync = db.dups ? true : false;
    if(db.evict)
    Evictor.init(db.evictorThreads);
    ...
    Cause-Effect Chain
    Program Slicing

    View Slide

  71. Main.main(…)
    Cursor.put(…)
    Main.init(…)
    Database.init(…)
    def init(Database db)
    Database.checkForNullParam(db.name, "dbName");
    Log.msg(Level.INFO, "db " + db.name + " open");
    ...
    if(db.replicated)
    configReplicated(...);
    ...
    this.cacheMode = db.cacheMode;
    this.commit = db.trans ? true : false;
    this.sync = db.dups ? true : false;
    if(db.evict)
    Evictor.init(db.evictorThreads);
    ...
    Cause-Effect Chain
    Program Slicing

    View Slide

  72. Main.main(…)
    Cursor.put(…)
    Main.init(…)
    Database.init(…)
    def init(Database db)
    Database.checkForNullParam(db.name, "dbName");
    Log.msg(Level.INFO, "db " + db.name + " open");
    ...
    if(db.replicated)
    configReplicated(...);
    ...
    this.cacheMode = db.cacheMode;
    this.commit = db.trans ? true : false;
    this.sync = db.dups ? true : false;
    if(db.evict)
    Evictor.init(db.evictorThreads);
    ...
    Cause-Effect Chain
    Program Slicing

    View Slide

  73. Main.main(…)
    Cursor.put(…)
    Main.init(…)
    Database.init(…)
    def init(Database db)
    Database.checkForNullParam(db.name, "dbName");
    Log.msg(Level.INFO, "db " + db.name + " open");
    ...
    if(db.replicated)
    configReplicated(...);
    ...
    this.cacheMode = db.cacheMode;
    this.commit = db.trans ? true : false;
    this.sync = db.dups ? true : false;
    if(db.evict)
    Evictor.init(db.evictorThreads);
    ...
    Cause-Effect Chain
    Program Slicing

    View Slide

  74. Main.main(…)
    Cursor.put(…)
    Main.init(…)
    Database.init(…)
    def init(Database db)
    Database.checkForNullParam(db.name, "dbName");
    Log.msg(Level.INFO, "db " + db.name + " open");
    ...
    if(db.replicated)
    configReplicated(...);
    ...
    this.cacheMode = db.cacheMode;
    this.commit = db.trans ? true : false;
    this.sync = db.dups ? true : false;
    if(db.evict)
    Evictor.init(db.evictorThreads);
    ...
    Cause-Effect Chain
    Program Slicing

    View Slide

  75. Influencing Options Option Hotspots Cause-Effect Chain
    Performance Modeling
    Global

    View Slide

  76. Influencing Options Option Hotspots Cause-Effect Chain
    Performance Modeling
    Global Local
    Performance Modeling

    View Slide

  77. Influencing Options Option Hotspots Cause-Effect Chain
    CPU Profiling
    Program Slicing
    Performance Modeling
    Global Local
    Performance Modeling

    View Slide

  78. Influencing Options Option Hotspots Cause-Effect Chain
    CPU Profiling
    Program Slicing
    Performance Modeling
    Global Local
    Performance Modeling
    GLIMPS

    View Slide

  79. Evaluation

    View Slide

  80. Evaluation
    RQ1: To what extent do the designed information
    providers help developers debug the performance of
    con
    fi
    gurable software systems?

    View Slide

  81. Evaluation
    RQ1: To what extent do the designed information
    providers help developers debug the performance of
    con
    fi
    gurable software systems?
    Validation User Study
    Confirmatory User Study

    View Slide

  82. “Within-subject” study
    Validation User Study
    30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Control - Did not use GLIMPS
    Treatment - Used GLIMPS
    System: Density Converter

    View Slide

  83. Validation User Study
    30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Control - Did not use GLIMPS
    Treatment - Used GLIMPS
    “Within-subject” study
    System: Density Converter

    View Slide

  84. Validation User Study
    30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Control - Did not use GLIMPS
    Treatment - Used GLIMPS
    “Within-subject” study
    System: Density Converter

    View Slide

  85. Validation User Study
    30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Control - Did not use GLIMPS
    Treatment - Used GLIMPS
    “Within-subject” study
    System: Density Converter

    View Slide

  86. Validation User Study
    30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Control - Did not use GLIMPS
    Treatment - Used GLIMPS
    SCALE +86.3
    AConverter.compress(…) +67.4
    “Within-subject” study
    System: Density Converter

    View Slide

  87. Validation User Study
    30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Control - Did not use GLIMPS
    Treatment - Used GLIMPS
    SCALE +86.3
    AConverter.compress(…) +67.4
    “Within-subject” study
    System: Density Converter
    Information providers support information
    needs

    View Slide

  88. 30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Confirmatory User Study
    55’ 60’
    Treatment - Used GLIMPS
    Control - Did not use GLIMPS
    System: Berkeley DB
    Between-subject study

    View Slide

  89. 30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Confirmatory User Study
    55’ 60’
    Treatment - Used GLIMPS
    Control - Did not use GLIMPS
    System: Berkeley DB
    Between-subject study

    View Slide

  90. 30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Confirmatory User Study
    55’ 60’
    Treatment - Used GLIMPS
    Control - Did not use GLIMPS
    System: Berkeley DB
    Between-subject study

    View Slide

  91. 30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Confirmatory User Study
    55’ 60’
    Treatment - Used GLIMPS
    Control - Did not use GLIMPS
    System: Berkeley DB
    Between-subject study

    View Slide

  92. 30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Confirmatory User Study
    55’ 60’
    Treatment - Used GLIMPS
    Control - Did not use GLIMPS
    System: Berkeley DB
    Between-subject study

    View Slide

  93. 30’ 35’ 45’
    05’ 10’ 20’ 25’
    15’ 40’ 50’
    Influencing Options Option Hotspots Cause-Effect Chain
    Confirmatory User Study
    55’ 60’
    Treatment - Used GLIMPS
    Control - Did not use GLIMPS
    System: Berkeley DB
    Between-subject study
    Information providers help developers
    debug the performance of complex
    con
    fi
    gurable systems

    View Slide

  94. Influencing Options Option Hotspots Cause-Effect Chain
    Help developers debug the performance
    of configurable software systems
    CPU Profiling Program Slicing
    Performance Modeling
    Global Local
    Tailor and Evaluate Ingredients

    View Slide

  95. On Debugging the Performance of Configurable Software
    Systems: Developer Needs and Tailored Tool Support

    View Slide

  96. 96
    Overview of Ingredients
    Tailor and Evaluate Ingredients
    CONTRIBUTION
    User Study to Identify Information Needs
    CONTRIBUTION
    White-box Performance-In
    fl
    uence Modeling
    CONTRIBUTION

    View Slide

  97. Compositionality Compression
    Insights!

    View Slide

  98. Compositionality
    Performance-in
    fl
    uence models can be built by composing models
    built independently for smaller regions of code
    System Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region
    Region
    Region
    Measure System
    Decompose
    Measure Regions
    Compose
    98

    View Slide

  99. Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region
    Region
    Region
    Measure System
    Decompose
    Measure Regions
    Compose
    System
    99
    Compositionality
    Performance-in
    fl
    uence models can be built by composing models
    built independently for smaller regions of code

    View Slide

  100. Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region
    Region
    Region
    Measure System
    Decompose
    Measure Regions
    Compose
    System
    100
    Compositionality
    Performance-in
    fl
    uence models can be built by composing models
    built independently for smaller regions of code

    View Slide

  101. Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region
    Region
    Region
    Measure System
    Decompose
    Measure Regions
    Compose
    System
    101
    Compositionality
    Performance-in
    fl
    uence models can be built by composing models
    built independently for smaller regions of code

    View Slide

  102. Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Local Performance-In
    fl
    uence Model
    Region
    Region
    Region
    Measure System
    Decompose
    Measure Regions
    Compose
    System
    102
    Compositionality
    Performance-in
    fl
    uence models can be built by composing models
    built independently for smaller regions of code

    View Slide

  103. def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    103

    View Slide

  104. Time
    TRUE
    FALSE
    Time
    TRUE TRUE
    TRUE FALSE
    def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    104

    View Slide

  105. Time
    TRUE 5
    FALSE 0
    def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    105
    Time
    TRUE TRUE
    TRUE FALSE

    View Slide

  106. Time
    TRUE 5
    FALSE 0
    Tprocess = 5·
    def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    106
    Time
    TRUE TRUE
    TRUE FALSE

    View Slide

  107. Time
    TRUE 5
    FALSE 0
    Tprocess = 5·
    Time
    TRUE TRUE 3
    TRUE FALSE 2
    Tconvert = 2· + 1·. ·
    def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    107

    View Slide

  108. Tprocess = 5·
    Tconvert = 2· + 1·. ·
    Compositionality
    +
    def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    108

    View Slide

  109. Tprocess = 5·
    Tconvert = 2· + 1·. ·
    Compositionality
    +
    def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    T = 7· + 1· ·
    109

    View Slide

  110. Compositionality
    System
    System
    27 = 128 con
    fi
    gurations
    22 + 24 + 22 + 24 + 22 = 38 con
    fi
    gurations 110

    View Slide

  111. Compositionality
    System
    System
    27 = 128 con
    fi
    gurations
    22 + 24 + 22 + 24 + 22 = 38 con
    fi
    gurations 111

    View Slide

  112. Compositionality
    System
    System
    27 = 128 con
    fi
    gurations
    22 + 24 + 22 + 24 + 22 = 38 con
    fi
    gurations 112

    View Slide

  113. Compositionality
    Insights!
    Compression

    View Slide

  114. Compression
    Compression allow us to simultaneously explore paths in multiple
    independent regions with a few con
    fi
    gurations
    114

    View Slide

  115. Compression
    if(a)
    ... // execution time: 1 second
    if(b)
    ... // execution time: 2 seconds
    if(c)
    ... // execution time: 3 seconds
    115

    View Slide

  116. Compression
    if(a)
    ... // execution time: 1 second
    if(b)
    ... // execution time: 2 seconds
    if(c)
    ... // execution time: 3 seconds
    Time
    TRUE
    FALSE
    Time
    TRUE
    FALSE
    Time
    TRUE
    FALSE
    116

    View Slide

  117. FALSE FALSE FALSE
    TRUE FALSE FALSE
    TRUE TRUE FALSE
    Compression
    if(a)
    ... // execution time: 1 second
    if(b)
    ... // execution time: 2 seconds
    if(c)
    ... // execution time: 3 seconds
    Time
    TRUE
    FALSE
    Time
    TRUE
    FALSE
    Time
    TRUE
    FALSE
    117

    View Slide

  118. FALSE FALSE FALSE
    TRUE FALSE FALSE
    TRUE TRUE FALSE
    if(a)
    ... // execution time: 1 second
    if(b)
    ... // execution time: 2 seconds
    if(c)
    ... // execution time: 3 seconds
    Time
    TRUE
    FALSE
    Time
    TRUE
    FALSE
    Time
    TRUE
    FALSE
    118
    Compression

    View Slide

  119. FALSE FALSE FALSE
    TRUE FALSE FALSE
    TRUE TRUE FALSE
    if(a)
    ... // execution time: 1 second
    if(b)
    ... // execution time: 2 seconds
    if(c)
    ... // execution time: 3 seconds
    Time
    TRUE
    FALSE 0
    Time
    TRUE
    FALSE 0
    Time
    TRUE
    FALSE 0
    119
    Compression

    View Slide

  120. FALSE FALSE FALSE
    TRUE FALSE FALSE
    TRUE TRUE FALSE
    if(a)
    ... // execution time: 1 second
    if(b)
    ... // execution time: 2 seconds
    if(c)
    ... // execution time: 3 seconds
    Time
    TRUE 1
    FALSE 0
    Time
    TRUE 3
    FALSE 0
    Time
    TRUE 2
    FALSE 0
    120
    Compression

    View Slide

  121. System
    22 + 24 + 22 + 24 + 22 = 38 con
    fi
    gurations
    System
    4 con
    fi
    gurations 121
    Compression

    View Slide

  122. System
    22 + 24 + 22 + 24 + 22 = 38 con
    fi
    gurations
    System
    4 con
    fi
    gurations 122
    Compression

    View Slide

  123. System
    22 + 24 + 22 + 24 + 22 = 38 con
    fi
    gurations
    System
    4 con
    fi
    gurations 123
    Compression

    View Slide

  124. System
    4 con
    fi
    gurations
    FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    TRUE FALSE TRUE TRUE FALSE TRUE TRUE
    FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    FALSE FALSE TRUE FALSE FALSE TRUE FALSE
    124
    Compression

    View Slide

  125. System
    4 con
    fi
    gurations
    FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    TRUE FALSE TRUE TRUE FALSE TRUE TRUE
    FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    FALSE FALSE TRUE FALSE FALSE TRUE FALSE
    125
    Compression

    View Slide

  126. System
    4 con
    fi
    gurations
    FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    TRUE FALSE TRUE TRUE FALSE TRUE TRUE
    FALSE FALSE FALSE FALSE FALSE FALSE FALSE
    FALSE FALSE TRUE FALSE FALSE TRUE FALSE
    126
    Compression

    View Slide

  127. Compression
    Measure Performance Build Model
    Compositionality
    System
    127

    View Slide

  128. Taint Analysis

    View Slide

  129. def main() {
    boolean a =
    ...
    process(a, b);
    }
    def process(boolean x, boolean y) {
    if(x)
    convert(y);
    ... // execution time: 5 seconds
    }
    def convert(boolean x) {
    if(x)
    ... // execution time: 3 seconds
    else
    ... // execution time: 2 seconds
    }
    In
    fl
    uencing options
    129

    View Slide

  130. Analyze Regions
    Measure Performance
    Build Model
    Taint Analysis
    Compression
    Compositionality
    System
    130

    View Slide

  131. ConfigCrusher Comprex
    Static Taint Analysis
    Regions: Control-flow
    statements
    Performance measurement:
    Instrumentation
    Dynamic Taint Analysis
    Regions: Methods
    Performance measurement:
    Off-the-shelf profiler
    131

    View Slide

  132. ConfigCrusher Comprex
    Static Taint Analysis
    Regions: Control-flow
    statements
    Dynamic Taint Analysis
    Regions: Methods
    132
    Both prototypes ef
    fi
    ciently build accurate
    and interpretable models
    Dynamic taint analysis scales to larger
    systems
    Method-level granularity does not
    sacri
    fi
    ces compression potential

    View Slide

  133. Evaluation

    View Slide

  134. 134
    ConfigCrusher Comprex
    Evaluate cost, accuracy, interpretability
    13 open-source Java systems
    Evaluation
    50 combinations of
    Sampling
    and Machine
    Learning

    View Slide

  135. Results: Density Converter
    0
    Cost (minutes)
    Error (MAPE)
    0
    40
    20
    Comprex
    x
    200 random con
    fi
    gurations
    & Random Forest
    5
    10
    200 random con
    fi
    gurations
    & Stepwise linear regression
    200
    400
    100
    300
    x
    x
    60
    Con
    fi
    gCrusher
    x
    135

    View Slide

  136. x +
    +
    +
    Results: Density Converter
    0
    Cost (minutes)
    Error (MAPE)
    0
    40
    20
    Comprex 200 random con
    fi
    gurations
    & Random Forest
    5
    10
    200 random con
    fi
    gurations
    & Stepwise linear regression
    200
    400
    100
    300
    60
    Con
    fi
    gCrusher
    + Interpretable
    x Not interpretable
    136

    View Slide

  137. x +
    +
    +
    Results: Density Converter
    0
    Cost (minutes)
    Error (MAPE)
    0
    40
    20
    Comprex 200 random con
    fi
    gurations
    & Random Forest
    5
    10
    200 random con
    fi
    gurations
    & Stepwise linear regression
    200
    400
    100
    300
    60
    Con
    fi
    gCrusher
    + Interpretable
    x Not interpretable
    137
    Ef
    fi
    ciently build accurate performance-
    in
    fl
    uence models
    Models are interpretable for debugging
    purposes

    View Slide

  138. Influencing Options Option Hotspots
    White-box Modeling
    Global Local
    138
    Help developers debug the performance
    of configurable software systems
    White-box Performance-In
    fl
    uence Modeling
    CONTRIBUTION

    View Slide

  139. Thesis Statement
    Tailoring speci
    fi
    c white-box analyses to track how con
    fi
    guration
    options in
    fl
    uence the performance of code-level structures in
    con
    fi
    gurable software systems helps developers to
    (1) ef
    fi
    ciently build accurate and interpretable global and
    local performance-in
    fl
    uence models
    (2) more easily inspect, trace, understand, and debug
    con
    fi
    guration-related performance issues.
    139

    View Slide