Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
CoordinateTransformation
Search
poyo
December 26, 2017
Education
0
150
CoordinateTransformation
poyo
December 26, 2017
Tweet
Share
More Decks by poyo
See All by poyo
Extended Euclidean algorithm
poyo
0
200
Chinese Remainder Theorem
poyo
0
140
continuity
poyo
0
180
n^k/a^n
poyo
0
200
ABC 041 D 徒競走
poyo
0
410
ARC 050 B 花束
poyo
0
670
Other Decks in Education
See All in Education
1111
cbtlibrary
0
270
1202
cbtlibrary
0
200
Activité_5_-_Les_indicateurs_du_climat_global.pdf
bernhardsvt
0
140
【旧:ZEPメタバース校舎操作ガイド】
ainischool
0
790
2025年度伊藤正彦ゼミ紹介
imash
0
170
20251119 如果是勇者欣美爾的話, 他會怎麼做? 東海資工
pichuang
0
170
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
3.1k
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
230
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
47k
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
770
Leveraging LLMs for student feedback in introductory data science courses (Stats Up AI)
minecr
0
160
MySmartSTEAM 2526
cbtlibrary
0
190
Featured
See All Featured
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
The untapped power of vector embeddings
frankvandijk
1
1.6k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
49k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.4k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1.1k
We Have a Design System, Now What?
morganepeng
54
8k
Abbi's Birthday
coloredviolet
1
4.7k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
Done Done
chrislema
186
16k
Transcript
࠲ඪมߦྻ December 26, 2017
݁ ࠲ඪมͱجఈมͷؔ ূ໌
݁ ࠲ඪมͱجఈมͷؔ ূ໌
݁ جఈ B Ͱͷ࠲ඪ pB ͱجఈ B′ Ͱͷ࠲ඪ pB′ ͱͷؔɺB
→ B′ ͷجఈมߦྻΛ T ͱ͢Δͱ pB′ = T−1pB Ͱ͢ɻ͜ͷ T−1 ͕࠲ඪมߦྻͰ͢ɻ ಛʹඪ४جఈ E = {e1, e2, . . . , en} Λ৽͍͠جఈ B = {b1, b2, . . . , bn} ʹऔΓ͑ͨͱ͖ɺ pB = ( b1 b2 · · · bn )−1 pE ͱද͞Ε·͢ɻ
݁ ࠲ඪมͱجఈมͷؔ ূ໌
جఈมߦྻͱ جఈมߦྻ T ͱɺϕΫτϧۭؒ V ͷچجఈ B ͔Β৽جఈ B′ ͷରԠΛදͨ͠ͷͰ͢ɻ
B = {x1, x2, . . . , xn}, B′ = {y1, y2, . . . , yn} ͱ͠·͢ɻyi ͔ͨ ͕ V ͷݩͳͷͰ x1, x2, . . . , xn ͷ 1 ࣍݁߹Ͱද͞Ε·͢ɻ y1 = t11x1 + t21x2 + · · · + tn1xn y2 = t12x1 + t22x2 + · · · + tn2xn . . . yn = t1nx1 + t2nx2 + · · · + tnnxn t ͷఴ͑ࣈͷৼΓํʹҙ͠·͢ɻ
جఈมߦྻʢ͖ͭͮʣ ͦΕͧΕͷࣜ yi = ( x1 x2 · · ·
xn ) t1i t2i . . . tni ͱॻ͚ΔͷͰɺ͜ΕΛฒΔͱ ( y1 y2 · · · yn ) = ( x1 x2 · · · xn ) t11 t21 · · · tn1 t21 t22 · · · tn2 . . . . . . ... . . . tn1 tn2 · · · tnn T ͱͳΓ·͢ɻ͜ͷ T ͷٯߦྻ͕࠲ඪมߦྻʹͳΔΜͰ͢Ͷɻ͢ ͍͝ɻ
݁ ࠲ඪมͱجఈมͷؔ ূ໌
͔֬Ί Ͳ͏৴͡ΒΕͳ͍ʢͦΜͳ߹ྑ͍͜ͱ͋Δͷ͔ʁʣͷͰɺ֬ ͔ΊͯΈ·͢ɻ ͦͦ࠲ඪͱɺV ͷجఈ B = {b1, b2, .
. . , bn} ͱϕΫτϧ v ∈ V ʹରͯ͠ɺv Λ b1, b2, . . . , bn ͷ 1 ࣍݁߹Ͱදͨ͠ͱ͖ͷ ͷ͜ͱͰͨ͠ʢ࣮ͦ͏Ͱ͢ʣ ɻͭ·Γ࣍ͷΑ͏ʹରԠ͚ͮΒ Ε·͢ɻ v1 v2 . . . vn B ⇄ v1b1 + v2b2 + · · · + vnbn = ( b1 b2 · · · bn ) v1 v2 . . . vn
͔֬Ίʢ͖ͭͮʣ B Ͱͷ࠲ඪ pB ͱ B′ Ͱͷ࠲ඪ pB′ ɺͱಉ͡ϕΫτϧͳͷͰ pB
= p1 p2 . . . pn B ⇄ ( x1 x2 · · · xn ) p1 p2 . . . pn = ( y1 y2 · · · yn ) q1 q2 . . . qn ⇄ q1 q2 . . . qn B′ = pB′ ͕Γཱͪ·͢ɻ
͔֬Ίʢ͖ͭͮʣ جఈมͷࣜΛೖ͢Δͱ ( x1 x2 · · · xn )
p1 p2 . . . pn = ( x1 x2 · · · xn ) T q1 q2 . . . qn ͱͳͬͯɺߦྻܭࢉΛ͢Δͱ p1x1 + p2x2 + · · · + pnxn = k1x1 + k2x2 + · · · + knxn ͜Μͳײ͡ʹͳΓ·͢ɻ͜͜ͰɺجఈʹΑΔϕΫτϧͷදࣔҰ ҙͳͷͰ p1 = k1, p2 = k2, . . . , pn = kn ͕Γཱͪ·͢ɻ
͔֬Ίʢ͖ͭͮʣ ͭ·Γ࣍ͷ͜ͱ͕͔Γ·ͨ͠ɻ p1 p2 .
. . pn = k1 k2 . . . kn = T q1 q2 . . . qn = t11 t21 · · · tn1 t21 t22 · · · tn2 . . . . . . ... . . . tn1 tn2 · · · tnn q1 q2 . . . qn ࣮ T ਖ਼ଇͳͷͰ 1 ࠨ͔Β T−1 Λ͔͚Δͱ pB′ = T−1pB Λಘ ·͢ɻ 1B′ → B ͷجఈมߦྻΛ U ͱ͢Δͱɺ ( x1 · · · xn ) = ( y1 · · · yn ) U = ( x1 · · · xn ) TU ͱͳͬͯ TU = E Ͱ͢ɻ