$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling Machine Learning at Holiday Extras (Big...
Search
Rebecca Vickery
November 13, 2019
Technology
0
130
Scaling Machine Learning at Holiday Extras (Big Data LDN 2019))
Rebecca Vickery
November 13, 2019
Tweet
Share
More Decks by Rebecca Vickery
See All by Rebecca Vickery
Pair Programming with AI
rebeccavickery
1
91
Machine Learning for Everyone
rebeccavickery
0
26
Data Preparation and the Importance of How Machines Learn
rebeccavickery
0
160
Scaling_Machine_Learning_at_Holiday_Extras_-_MUC.pdf
rebeccavickery
0
1.2k
Gender Bias, Why we Need More Women in Tech
rebeccavickery
0
1.2k
The Fastest Way to Learn Data Science
rebeccavickery
0
54
Employing Google Cloud Machine Learning Engine to Develop Models in Production
rebeccavickery
0
1.3k
Other Decks in Technology
See All in Technology
20251218_AIを活用した開発生産性向上の全社的な取り組みの進め方について / How to proceed with company-wide initiatives to improve development productivity using AI
yayoi_dd
0
280
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
240
AWS re:Invent 2025 re:Cap LT大会 データベース好きが語る re:Invent 2025 データベースアップデート/セッションの紹介
coldairflow
0
110
MySQLとPostgreSQLのコレーション / Collation of MySQL and PostgreSQL
tmtms
1
1k
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
170
Strands Agents × インタリーブ思考 で変わるAIエージェント設計 / Strands Agents x Interleaved Thinking AI Agents
takanorig
4
1.1k
AI時代のワークフロー設計〜Durable Functions / Step Functions / Strands Agents を添えて〜
yakumo
3
1.3k
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
1.8k
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
5
1.4k
今年のデータ・ML系アップデートと気になるアプデのご紹介
nayuts
1
560
年間40件以上の登壇を続けて見えた「本当の発信力」/ 20251213 Masaki Okuda
shift_evolve
PRO
1
140
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
180
Featured
See All Featured
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
87
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.7k
Embracing the Ebb and Flow
colly
88
4.9k
Tell your own story through comics
letsgokoyo
0
740
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
HDC tutorial
michielstock
0
260
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
320
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
180
Measuring & Analyzing Core Web Vitals
bluesmoon
9
710
Transcript
Scaling Machine Learning at Holiday Extras REBECCA VICKERY | DATA
SCIENTIST @vickdata
Travel planning is time consuming Airport parking Airport hotels Airport
lounges Travel insurance Holiday money Port products Car hire Airport transfers 582 minutes Over 46 days* Travel Planning *Facebook commissioned consumer research company GfK
Optimising consumer decision making Airport parking Airport hotels Airport lounges
Travel insurance Holiday money Port products Car hire Airport transfers Less Hassle. More Holiday Trip recommendations
Automated bidding Ad targeting Channel optimisation 1 Ad spend 2
Commercial 3 Customer Experience 4 Marketing Lots of other processes to optimise Automated pricing Allocation Revenue optimisation Automated call handling Personalised experiences Intelligent messaging Optimise send frequency
How to scale Use Cases and Buy in (Input Team
Deployment
How to scale Use Cases and Buy in (Input Team
Deployment
“Ideas are worth nothing unless executed”, Derek Sivers
Deploying machine learning is hard Scaling is even harder
Tools - Data Scientists Open source Lack Software Development expertise
Mainly Python c Flaticon
Tools - Software Engineers Different tools Lack ML/Data expertise Mainly
Javascript c Flaticon
Data science process The wrong kind of independence c Flaticon
People Small data science team Science + software experts are
rare c Flaticon
Two types of deployment
Bespoke Solutions “Ideas are worth nothing unless executed”, Derek Sivers
c Daniel Moyo
Unused Models Many models never make it to production “Ideas
are worth nothing unless executed”, Derek Sivers
Time to model deployment Model development = days to weeks
Model deployment = weeks to never! “Ideas are worth nothing unless executed”, Derek Sivers
The technology
c Flaticon init.py task.py setup.py model.py Model Package
Repeatable, Reusable Process init.py task.py setup.py model.py Model Package
Data transformations Scikit-learn pipelines + custom transformers Transformation occurs in
the model
Solution for other libraries too Add preprocess file to the
package Image taken from Google Cloud documentation
Further customisation Custom scoring Custom prediction routines
None
Faster time to production c flaticon Fully Managed service
Not Quite!
Collaborative Project
ML Proxy (bespoke ML microservice)
Model Versioning
Monitoring - Model Performance
Monitoring - AI Platform Performance
Time to model deployment Model development = days to weeks
Model deployment = hours to days “Ideas are worth nothing unless executed”, Derek Sivers
How to scale Use Cases and Buy in (Input Team
Deployment
The right kind of independence c flaticon Data Scientists have
full ownership over models
The right kind of independence c flaticon Data scientists work
closely together
The right kind of independence c flaticon But they also
work closely with other teams
Use cases and buy in c flaticon Focus on problems
to solve
Use cases and buy in c flaticon Don’t start in
the highest value area
Use cases and buy in Deploy a first version (not
the best) as fast as possible
Test and learn Photo by Alex Kondratiev on Unsplash Use
cases and buy in
Thank you @vickdata