Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Preparation and the Importance of How Mach...
Search
Rebecca Vickery
February 05, 2020
Technology
0
160
Data Preparation and the Importance of How Machines Learn
Rebecca Vickery
February 05, 2020
Tweet
Share
More Decks by Rebecca Vickery
See All by Rebecca Vickery
Pair Programming with AI
rebeccavickery
1
91
Machine Learning for Everyone
rebeccavickery
0
26
Scaling Machine Learning at Holiday Extras (Big Data LDN 2019))
rebeccavickery
0
130
Scaling_Machine_Learning_at_Holiday_Extras_-_MUC.pdf
rebeccavickery
0
1.2k
Gender Bias, Why we Need More Women in Tech
rebeccavickery
0
1.2k
The Fastest Way to Learn Data Science
rebeccavickery
0
54
Employing Google Cloud Machine Learning Engine to Develop Models in Production
rebeccavickery
0
1.3k
Other Decks in Technology
See All in Technology
Databricks Free Editionで始めるLakeflow SDP
taka_aki
0
120
First-Principles-of-Scrum
hiranabe
4
2.2k
複雑さを受け入れるか、拒むか? - 事業成長とともに育ったモノリスを前に私が考えたこと #RSGT2026
murabayashi
1
2k
Data Intelligence on Lakehouse Paradigm
scotthsieh825
0
160
新米スクラムマスターの4ヶ月 -「スクラムイベントを回しているのに手応えがない」からの脱出 / Four Months as a New Scrum Master — When Scrum Events Were Running, but Nothing Felt Right
owata
0
160
WebDriver BiDi 2025年のふりかえり
yotahada3
1
140
kintone開発のプラットフォームエンジニアの紹介
cybozuinsideout
PRO
0
530
田舎で20年スクラム(後編):一個人が企業で長期戦アジャイルに挑む意味
chinmo
1
1.5k
習慣とAIと環境 — 技術探求を続ける3つの鍵
azukiazusa1
2
420
コミュニティが持つ「学びと成長の場」としての作用 / RSGT2026
ama_ch
2
320
Digitization部 紹介資料
sansan33
PRO
1
6.6k
20260114_データ横丁 新年LT大会:2026年の抱負
taromatsui_cccmkhd
0
290
Featured
See All Featured
Designing Powerful Visuals for Engaging Learning
tmiket
0
200
How Software Deployment tools have changed in the past 20 years
geshan
0
31k
Become a Pro
speakerdeck
PRO
31
5.8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
65
35k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
The Curious Case for Waylosing
cassininazir
0
210
Code Review Best Practice
trishagee
74
19k
The innovator’s Mindset - Leading Through an Era of Exponential Change - McGill University 2025
jdejongh
PRO
1
82
New Earth Scene 8
popppiees
1
1.4k
Data-driven link building: lessons from a $708K investment (BrightonSEO talk)
szymonslowik
1
880
Un-Boring Meetings
codingconduct
0
180
Transcript
None
Data Preparation and the Importance of how Machines Learn Rebecca
Vickery, Data Scientist, Holiday Extras
Machine learning
Source: Google images
Simple ML workflow Get data >> baseline model >> model
selection >> model tuning >> predict
Simple ML workflow Get data >> Features/Inputs What we want
to predict
Simple ML workflow Baseline model >> Accuracy score Perfect =
1.0 0.44
Simple ML workflow Model selection >> Best model = Random
Forest
Simple ML workflow Hyperparameter optimisation >> Best score = 1.0
Best Params = {'max_depth': 5, 'min_samples_leaf': 1, 'min_samples_split': 10, 'n_estimators': 500}
Source: Google images
What happens when we have this data set?
What happens when we have this data set?
None
Source: thedailybeast.com
Actual ML workflow Get data >> data preparation >> feature
engineering >> baseline model >> model selection >> model tuning >> predict
Label encoding
Problem Source: flaticon.com 4 is bigger than 1 so there
must be a relationship between these rows Source: flaticon.com 1 = neutered male 2 = spayed female 3 = intact male
Solution: One hot encoding
Ordinal data
Problem: Won’t work for all variables 366 different unique values
= 366 new features
Solution: Feature engineering? Single Colour Multi Colour
Problem: We will lose a lot of information Source: thetelegraph.com
Solution: Weight of evidence For each colour (e.g. Tan): WOE
= ln ( ( pi /p) / ( ni / n) ) pi = number of times Tan appears in positive class (1) p = total number of positive classes (1) ni = number of times Tan appears in negative class (0) n = total number of negative classes (0)
Solution: Weight of evidence Output is a positive or negative
number
Solution(s) WOE is one of many solutions for this
Problem(s) Source: Photo by Louis Reed on Unsplash
Solution: Scikit-learn pipelines
Solution: category_encoders pip install category_encoders
Pipeline example
Less time But still some work to do
“There are only two Machine Learning approaches that win competitions:
Handcrafted & Neural Networks.” Anthony Goldbloom, CEO & Founder, Kaggle
Thanks for listening Find me at...