Upgrade to Pro — share decks privately, control downloads, hide ads and more …

検索結果の品質向上

Recruit
August 10, 2023

 検索結果の品質向上

2023年度リクルート エンジニアコース新人研修の講義資料です

Recruit

August 10, 2023
Tweet

More Decks by Recruit

Other Decks in Technology

Transcript

  1. • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? • Term

    とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 2 アジェンダ
  2. 自己紹介 守谷 純之介(モリヤ ジュンノスケ) • 2002〜2003: ポスドク研究員 • 2003〜2004: ベンチャー企業の何でも屋さん

    • 2004〜2013: ポータルサイトの検索屋さん • 2013〜: リクルート • Qass: 検索チーム • Bazz: 自動応答 Bot © Recruit Co., Ltd., 2023. 4 Compiler が好きです。 何の貢献もできないけど… 著者の Aho & Ullman は 2020年度チューニング賞受賞!! https://awards.acm.org/about/2020-turing
  3. 自己紹介 © Recruit Co., Ltd., 2023. 5 趣味はギター なんですが、 ギターよりもエフェクターを

    いじっている時間が長くて、 半田ごて握っている時間の方 が長いかも…
  4. Qass: 検索チームのシンプル API サービスを担当 © Recruit Co., Ltd., 2023. 10

    ちょっと変わった検索 Document かわいい 美味しい 和風 Document には 書いていないけど…
  5. Qass: 検索チームのシンプル API サービスを担当 © Recruit Co., Ltd., 2023. 11

    ちょっと変わった検索 Document A Document を 分差表現して… [0.23, 0.54,…] [0.22, 0.58,…] ユーザーの好み Document A Document B Document C
  6. コサイン類似度 © Recruit Co., Ltd., 2023. 12 𝑠𝑖𝑚 𝑎, 𝑏

    = cos 𝜃 = 𝑎 ∙ 𝑏 | 𝑎 | ∙ | 𝑏 | 𝑎 𝑏 𝜃 Document A ユーザーの好み
  7. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 13
  8. 今日は扱わない検索 © Recruit Co., Ltd., 2023. 14 The Art of

    Computer Programming, Volume 3: Sorting and Searching The Flexible Pattern Matching in Strings: Practical On-Line Search Algorithms for Texts and Biological Sequences $ grep $ awk $ sed 正規表現 https://a.co/d/6GWYMi7 https://amzn.asia/d/20TRTt5
  9. 今日扱う検索 ① © Recruit Co., Ltd., 2023. 15 Introduction to

    Information Retrieval Modern Information Retrieval Information Retrieval: Implementing and Evaluating Search Engines IR=情報検索 https://a.co/d/38BDNKx https://a.co/d/aSseRE9 https://a.co/d/37WAL89
  10. 今日扱う検索 ② © Recruit Co., Ltd., 2023. 16 IR=情報検索 情報検索

    :検索エンジンの実装と評価 情報検索の基礎
  11. 今日扱う検索!! © Recruit Co., Ltd., 2023. 19 Elasticsearch server Apache

    Solr 入門 株式会社リクルートテクノロジーズ (監修)
  12. © Recruit Co., Ltd., 2023. 20 検索チーム (Qass) の 河野晋策

    さんが共著の 『検索システム ― 実務者のための開発改善ガイド ブック』 2022年04月22日発売!! 今日の講義は(ずっと寝ていても)この本を読めばOK https://www.lambdanote.com/blogs/news/ir-system 今日扱う検索!!!!!
  13. 2つの検索の Pros & Cons © Recruit Co., Ltd., 2023. 21

    特徴\タイプ 逐次検索 Index 型検索 事前処理 Pros: なし(コスト小) Cons: あり(コスト大) 検索速度 Cons: 時間大 Pros: 時間小 メモリー使用量 Pros: メモリー小 Cons: メモリー大 典型的な手法 grep: • Knuth–Morris–Pratt 法 • Boyer-Moore 法 転置インデックス • N-gramインデックス • 形態素インデックス 全てはユーザー体験向 上の為に!!
  14. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 22
  15. Indexing: 事前準備=転置 index の作成 © Recruit Co., Ltd., 2023. 24

    Linuxは、狭義には Linuxカーネル、広義に は… 検索対象 最新版となるLinux4.20 のリリース 転置 index Linux カーネル リリース A B A A B B
  16. Search: AND 検索 © Recruit Co., Ltd., 2023. 25 転置

    index Linux カーネル リリース A A B B 検索クエリ: Linux AND カーネル ∩ Merge [A, B] [B] [B]
  17. Search: OR 検索 © Recruit Co., Ltd., 2023. 26 転置

    index Linux カーネル リリース A A B B 検索クエリ: リリース OR カーネル ∪ Merge [B] [A] [A, B]
  18. Search: マージは大変 © Recruit Co., Ltd., 2023. 27 転置 index

    Linux カーネル リリース A A B B 転置 Index の検索における Merge はコアであり、コストが超高い
  19. 転置 Index (Inverted Index) とは? 1.ドキュメントに含まれる特性 をキー (全文検索などでは Term) にして、集合を紐付け

    るリスト構造 (Posting List) 2.ドキュメントのリストはソー ト済み 3.通常は単語の現れた位置情報 も格納 (フレーズ検索) © Recruit Co., Ltd., 2023. 28 転置 index Linux カーネル リリース A A B B
  20. 転置 Index (Inverted Index) とは? まぁ… ただのハッシュテーブルw © Recruit Co.,

    Ltd., 2023. 29 転置 index Linux カーネル リリース A A B B
  21. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 31
  22. 2つの検索戦略 © Recruit Co., Ltd., 2023. 32 転置 index Linux

    カーネル リリース A A B B 1. TAAT = Term At A Time 2. DAAT = Document At A Time
  23. 2つの検索戦略 © Recruit Co., Ltd., 2023. 33 転置 index Linux

    カーネル リリース A A B B 1. TAAT = Term At A Time 2. DAAT = Document At A Time
  24. TAAT (Term At A Time) における AND 検索 © Recruit

    Co., Ltd., 2023. 34 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 ① ② 1 1 1 2 3 3 4 5 5 6 6 7 1.「mmap」の posting list を accumulator に追加: acc0 = [1,5] 2.「Linux」の posting list か ら、次のルールで新しい accumulator acc 1 を作成: acc0 に有 ⇒ 追加 acc0 に無 ⇒ 無視 acc1 = [1, 5] 検索クエリ: Linux AND mmap 要素数の少ない Posting List から開始するのが効率的!!
  25. TAAT (Term At A Time) における OR 検索 © Recruit

    Co., Ltd., 2023. 35 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 ① ② 1 1 1 2 3 3 4 5 5 6 6 7 1.「mmap」の posting list を accumulator に追加: acc0 = [1,5] 2.「Linux」の posting list を accumulator に追加: acc1 = [1, 3, 5, 6] 検索クエリ: Linux OR mmap 効率的な方法はない…
  26. 2つの検索戦略 © Recruit Co., Ltd., 2023. 36 転置 index Linux

    カーネル リリース A A B B 1. TAAT = Term At A Time 2. DAAT = Document At A Time
  27. DAAT (Document At A Time) の基本 © Recruit Co., Ltd.,

    2023. 37 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 1 1 1 2 3 3 4 5 5 6 6 7 • TAAT は横串 • DAAT は縦串
  28. DAAT (Document At A Time) における AND 検索 © Recruit

    Co., Ltd., 2023. 38 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 ① ② 1 1 1 2 3 3 4 5 5 6 6 7 • Term 毎にカーソルを準備 • 各カーソルを移動し、共通の ドキュメントを発見したら、 accumulator に追加 検索クエリ: Linux AND mmap acc = []
  29. DAAT (Document At A Time) における AND 検索 © Recruit

    Co., Ltd., 2023. 39 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 ① ② 1 1 1 2 3 3 4 5 5 6 6 7 • Term 毎にカーソルを準備 • 各カーソルを移動し、共通の ドキュメントを発見したら、 accumulator に追加 検索クエリ: Linux AND mmap acc = [1]
  30. DAAT (Document At A Time) における AND 検索 © Recruit

    Co., Ltd., 2023. 40 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 ① ② 1 1 1 2 3 3 4 5 5 6 6 7 • Term 毎にカーソルを準備 • 各カーソルを移動し、共通の ドキュメントを発見したら、 accumulator に追加 検索クエリ: Linux AND mmap acc = [1]
  31. DAAT (Document At A Time) における AND 検索 © Recruit

    Co., Ltd., 2023. 41 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 ① ② 1 1 1 2 3 3 4 5 5 6 6 7 • Term 毎にカーソルを準備 • 各カーソルを移動し、共通の ドキュメントを発見したら、 accumulator に追加 検索クエリ: Linux AND mmap acc = [1, 5]
  32. DAAT (Document At A Time) における OR 検索 © Recruit

    Co., Ltd., 2023. 42 50,241件 10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 ① ② 1 1 1 2 3 3 4 5 5 6 6 7 • Term 毎にカーソルを準備して、 全ての要素を重複なく追加 検索クエリ: Linux OR mmap 効率的な方法はない…
  33. TAAT vs DAAT © Recruit Co., Ltd., 2023. 43 50,241件

    10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 1 1 1 2 3 3 4 5 5 6 6 7 • メモリ使用量が多いのは TAAT • OR 検索では差異なし • かなりプリミティブな作り
  34. TAAT vs DAAT © Recruit Co., Ltd., 2023. 44 50,241件

    10,320件 30,483件 500,020件 UNIX BSD mmap kernel Linux 520件 1 1 1 2 3 3 4 5 5 6 6 7 S. Ding and T. Suel. Faster top-k document retrieval using block-max indexes. In Proceedings of the 34th Annual International ACM SIGIR Conference on Research and development in Information Retrieval, pages 993-1002, 2011. ↑の成果は Lucene 8 (2019/3/14 リリース) で実装 • https://fosdem.org/2019/schedule/event/apache_lucene_solr_8/attachments/slides/3325/export/events/attachments/apache_lucene_so lr_8/slides/3325/SchindlerLucene8Slides.pdf • https://mocobeta.github.io/slides-html/search-tech-talk-1/search-tech-talk-1.html 今でも効率的なアルゴリズムの研究が続いている
  35. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 45
  36. 実装することなんてあるの? © Recruit Co., Ltd., 2023. 46 Java で実装された 検索ライブラリ

    Lucene 利用 利用 Solr 検索エンジン、全文検索 No… since 2010 since 2004 since 1999
  37. Lucene © Recruit Co., Ltd., 2023. 47 • 転置インデックスを提供 •

    検索の戦略は DAAT • 検索の非常にネイティブな機能のみ提供 • 様々な検索機能 Boolean Query, Range Query、Fuzzy Query • スコアリング機能 設計が非常に優秀な証ですね。 since 1999
  38. 一般的な index のデータ構造 © Recruit Co., Ltd., 2023. 50 •

    B木(B-tree) • B+木(B+-tree) • B*木(B*-tree) • Skip-List
  39. Posting List (Skip List) © Recruit Co., Ltd., 2023. 51

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 291 53395 53395 ものすごく疎な部分がある
  40. Posting List (Skip List) © Recruit Co., Ltd., 2023. 52

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 291 53395 53395 ものすごく疎な部分がある
  41. Posting List (Skip List) © Recruit Co., Ltd., 2023. 53

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 291 53395 53395 ものすごく疎な部分がある 53,392回も比較する!?
  42. Posting List (Skip List) © Recruit Co., Ltd., 2023. 54

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 183 291 291 53395 53395 53395 53395 53395 53395 特定の間隔でジャンプ(Skip) する冗長なリストをもつ
  43. Posting List (Skip List) © Recruit Co., Ltd., 2023. 55

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 183 291 291 53395 53395 53395 53395 53395 53395
  44. Posting List (Skip List) © Recruit Co., Ltd., 2022. 56

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 183 291 291 53395 53395 53395 53395 53395 53395
  45. Posting List (Skip List) © Recruit Co., Ltd., 2023. 57

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 183 291 291 53395 53395 53395 53395 53395 53395
  46. Posting List (Skip List) © Recruit Co., Ltd., 2023. 58

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 183 291 291 53395 53395 53395 53395 53395 53395
  47. Posting List (Skip List) © Recruit Co., Ltd., 2023. 59

    4,820,483件 93,832,732件 car book 0件 53,392件 1 3 3 183 183 291 291 53395 53395 53395 53395 53395 53395 見回る回数が少ない!! ※ スキップの段数に依存 ※ スキップの間隔に依存
  48. Lucene の Posting List (Skip List) © Recruit Co., Ltd.,

    2023. 60 • https://gitbox.apache.org/repos/asf?p=lucene.git;a=blob;f=lucene/core/src/java/org/apache/lucene/codecs/MultiLevelSkipListWriter.java • https://gitbox.apache.org/repos/asf?p=lucene.git;a=blob;f=lucene/core/src/java/org/apache/lucene/codecs/MultiLevelSkipListReader.java * Example for skipInterval = 3: * c (skip level 2) * c c c (skip level 1) * x x x x x x x x x x (skip level 0) * d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d d (posting list) * 3 6 9 12 15 18 21 24 27 30 (df) * * d – document * x - skip data * c - skip data with child pointer
  49. Lucene の Posting List (Skip List) © Recruit Co., Ltd.,

    2023. 61 Apache Lucene - Index File Formats: https://lucene.apache.org/core/9_0_0/core/org/apache/lucene/codecs/lucen e90/package-summary.html#package.description
  50. 一般的な index のデータ構造 © Recruit Co., Ltd., 2023. 62 •

    B木(B-tree) • B+木(B+-tree) • B*木(B*-tree) • Skip-List
  51. B+木 © Recruit Co., Ltd., 2023. 63 • 葉ブロックがデータを表す •

    内部ブロックは index(データをもたない) • 条件「各ブロックは a 個以上 b 個以下(例では2個以上3個以下)のエントリを必ずもつ」 を満たすように、木の構造を変形する • 範囲指定のクエリに対して、強力に動作 • ブロックデバイス(葉ブロックと内部ブロックを格納)との相性が抜群 30 50 7 12 22 30 39 52 55 73 内部ブロック 葉ブロック 15以上?
  52. ブロックデバイス © Recruit Co., Ltd., 2023. 64 • ブロック単位で読み書き •

    ブロックの大きさはブロックサイズ • ブロックサイズは結構大きい(Linux のデフォルトは 4 KB) • 1bit 書き換えても、ブロックごと書き換えられる 残念ながら SSD も ブロックデバイス
  53. 他にもすることがある!Search のマージは大変 © Recruit Co., Ltd., 2023. 68 転置 index

    Linux カーネル リリース A A B B 転置 Index の検索における Merge はコアであり、コストが超高い
  54. Practice①: 課題のゴール © Recruit Co., Ltd., 2023. 71 • 転置インデックスの構造を知る

    • Indexing と Search のフェーズが分離されていることを知る • 転置インデックス上での検索の動作原理を実装していみる • 永続的なインデックスの保存方法を知る(一旦、ファイルに保存してみよう) • メモリー上への配置は結構時間がかかることを知る 課題のゴール
  55. Practice①: 準備 © Recruit Co., Ltd., 2023. 72 • Python

    3 系ならば Good • Python 2 系でも OK • 環境を汚さないようにするには、 pyenv がお勧め • (実務では、Dev Container 等なのでご安心を!) Python の実行環境 課題の参考資料をダウンロード • moriya-search-2023-practice.tgz をダウンロード • かなり raw level な python のプログラム! (実業務では、こんな raw level なプログラムと環境ではないので、ご安心を) ※1 ※1 こちらの資料では、参考資料を省略させて頂きます。 課題の内容と資料のみから、ご想像頂ければと思います。
  56. Practice①: 【課題】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 73 • 転置インデックスを実装して、AND

    と OR 検 索してみよう • 転置インデックスをファイルに保存できるよう にしよう • 2つのフェーズを実装 • インデックス作成フェーズ • 検索フェーズ • 検索の戦略は TAAT で OK • 2つのファイルで転置インデックスを実現 • Term を管理する Python 辞書ファイル: index_offset.dat • Posting List のファイル: index_posting_list.dat 課題 T:00000 T:00001 T:00002 T:FFFFF D:001 10〜50個のドキュメント D:024 D:001 D:001 D:099 D:032 D:033 D:055 〜 index_offset.dat index_posting_list.dat
  57. Practice①: 【戦略】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 74 • index_offset.dat

    (Term を管理する Python 辞書ファイル) • 各 Term の Posting List が Posting List のファイルのどこに存在する か?!の Offset を格納 • index_posting_list.dat (Posting List のファイル) • 実際の Posting List を保存 2つのファイル T:00000 T:00001 T:00002 T:FFFFF D:001 10〜50個のドキュメント D:024 D:001 D:001 D:099 D:032 D:033 D:055 〜 index_offset.dat index_posting_list.dat
  58. Practice①: 【仕様】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 要求される仕様 • ファイルに保存できること

    • Term は擬似的に 0〜F の長さ 5 の全ての組合せ T:00000 〜 T:FFFFF で総数 1,048,576 = 16^5 • Document の ID は D:000 〜 D:100 をランダム に生成 • 各 Term は 10 個から 50 個のランダムな個数の ドキュメントをもつ T:00000 T:00001 T:00002 T:FFFFF D:001 10〜50個のドキュメント D:024 D:001 D:001 D:099 D:032 D:033 D:055 〜 16^5 index_offset.dat index_posting_list.dat
  59. Practice①: 【資料】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 76 参考資料の解説① •

    課題の解説プログラム (全部 python版) • p0_dict_index.py • p0_dict_search.py • 回答例!! (まずは見ないで頑張ろう!) • p1_answer_file_index.py • p1_answer_file_search.py • 楽するための課題共通ライブラリ • posting_list.py • search.py • term.py T:00000 T:00001 T:00002 T:FFFFF D:001 p0_index.dat(課題の解説用) 10〜50個のドキュメント D:024 D:001 D:001 D:099 D:032 D:033 D:055 〜 16^5
  60. Practice①: 【資料】転置インデックスを実装してみよう © Recruit Co., Ltd., 2022. 77 参考資料の解説② •

    「課題が分からん!」という人(多分、 皆さんそうかも…)は以下を参考に • p0_dict_index.py • p0_dict_search.py • p0_dic_* は「python のオブジェクト をファイルに保存」版 = キーポイントは pickle !! • ゴールは「Posting List のファイルを 普通の文字列のファイル」にしてみる こと • 「Python の辞書ファイル」はそのまま 「Python のオブジェクトをファイルに 保存」で OK (pickle 版流用でOK) • 以下は、その実装の一例(回答!!): • p1_answer_file_index.py • p1_answer_file_search.py T:00000 T:00001 T:00002 T:FFFFF D:001 10〜50個のドキュメント D:024 D:001 D:001 D:099 D:032 D:033 D:055 〜 index_offset.dat index_posting_list.dat
  61. Practice①: 【資料】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 78 参考資料の解説③ •

    term.py • 課題の term を作ってくれるクラス • 引数で何個 term を作るか?指定 • 引数なしだと、16^5 個(開発時は少なめに指定しましょう) • フォーマットは T:00000〜T:FFFFF • posting_list.py • 課題の posting_list を作ってくれるクラス • 擬似的に各 term は 10〜50 個のドキュメントを保持 • ドキュメントのIDは D:000〜D:100 でランダム(ランダムの seed は term にしているのでみんな同じ) • search.py • Posting List に対して、AND と OR 検索を提供するクラス • ものすごく端折ってあり、set を使って楽しています • TAAT を仮定しています • TAAT と DAAT に興味があった人は、DAAT を実装するのも OK (Level5)
  62. Practice①: 【資料】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 79 参考資料の解説③ •

    課題解説プログラムの実行方法 # インデックス生成 (100万オーダーで生成するので結構時間がかかります) $ ./p0_dict_index.py # 検索(検索対象は __main__ 以下の term で指定。50万回検索するのでちょっと時間がかかります) $ ./p0_dict_search.py
  63. Practice①: 【資料】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 80 参考資料の解説④ 作業時は、生成するサイズを小さくしましょう!!

    (時間がかかるので…) Index の Term.create() の引数指定で 100 個等指定すれば OK (デフォルト値は 16^5)
  64. Practice①: 【資料】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 81 参考資料の解説⑤ •

    p1_answer_file_index.py で採用したデータ構造 (TSV 形式) T:000FF ¥t 00012 ¥t D:032 ¥t D:036 ¥t … ¥t D:093¥n Term 保持している ドキュメントの個数 5桁の ドキュメント ID 改行コード
  65. Practice①: 転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 82 改めて課題を T:00000

    T:00001 T:00002 T:FFFFF D:001 10〜50個のドキュメント D:024 D:001 D:001 D:099 D:032 D:033 D:055 〜 1. p0_dict_index.py を実行してみる 2. p0_dict_search.py を実行してみる 3. p1_file_index.py を実装してみる • 2つのファイルの転地インデック スを実装: • index_offset.dat: (Python 辞書ファイル) • index_posting_list.dat (Posting List ファイル) 4. p1_file_search.py を実装してみる 16^5 index_offset.dat index_posting_list.dat
  66. Practice①: 【レベル】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 83 課題のレベル •

    Level0: p0_dict_index.py と p0_dict_search.py を実行して中身をみて、「課題が何なのか?」だけでも知る • Level1: 疲れたので、p1_answer_file_index.py と p1_answer_file_search.py を実行だけしてみる • Level2: p1_file_index.py と p1_file_search.py を作ってみる(完成しなくても OK) • Level3: 保存される Posting List のフォーマットが見にくいので、変えてみる • Level4: 自力で p1_file_index.py と p1_file_search.py を作る • Level5: TAAT ではなく、DAAT で検索を書き換える(search.py を変更。オススメしません)
  67. Practice①: 【参考】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 84 実装上のキーワード (ヒント!)

    • Python の辞書ファイルの保存は pickle を使おう • Posting List のファイルの読み書きは codecs を使うのが吉 (utf-8 にしよう!) • Posting List 自体は可変長ですが、中身は固定長で OK! • Posting List の長さが、そのまま Offset になるように出来ます! • Posting List ファイル内の読込は file の seek で見つけ出し、readline で OK!
  68. Practice①: 【参考】転置インデックスを実装してみよう © Recruit Co., Ltd., 2023. 85 Python のプロファイラーや

    time コマンドでの比較 $ python -m cProfile -s cumtime p0_dict_search.py $ python -m cProfile -s cumtime p1_file_search.py $ time ./p0_dict_search.py $ time ./p1_file_search.py
  69. Practice① © Recruit Co., Ltd., 2023. 86 👉 • 転置インデックスの「作成フェーズ」と「検索フェーズ」

    • dict_* に比べて file_* が遅いことを実感できましたか?! • Load の時間も気になりましたか?!
  70. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 87
  71. mmap © Recruit Co., Ltd., 2023. 91 • システムコール •

    システムムコールだけど、ユーザープロセス の仮想アドレス空間に作成されるので、コン テクストスイッチが少ない: (ユーザー空間 vs カーネル空間) • メモリマップトファイルとして扱えるので、 追加・削除・更新が楽 • 複数のプロセス間で共有もできる • 【注意】Java の世界から逸脱している (Java のヒープ外でアロケートされてる) • 【おまけ】C で malloc すると内部では mmap が呼ばれる
  72. mmap © Recruit Co., Ltd., 2023. 92 0x00000 実メモリ 0x00000

    プロセスA 実アドレス 0x00000 プロセスB 仮想アドレス 仮想アドレス ファイル
  73. Elasticsearch の推奨設定 © Recruit Co., Ltd., 2023. 93 “The standard

    recommendation is to give 50% of the available memory to Elasticsearch heap, while leaving the other 50% free. It won’t go unused; Lucene will happily gobble up whatever is left over.” 【注意】Java の世界から逸脱している(Java のヒープ外でアロケートされてる)
  74. Lucene の index 格納 © Recruit Co., Ltd., 2023. 94

    org.apache.lucene.store(代表的な3種類) 1. SimpleFSDirectory.java • java.nio.ByteBuffer 2. NIOFSDirectory.java • java.nio.ByteBuffer 3. MMapDirectory.java • java.nio.MappedByteBuffer • https://lucene.apache.org/core/9_5_0/core/org/apache/lucene/store/package-summary.html
  75. Indeed の独自実装: util-mmap © Recruit Co., Ltd., 2023. 95 MappedByteBuffer

    の既知の制約を克服: – 安全にアンマップできない – サイズが 2GB (int) を超えるファイルをマップできない – スレッドセーフではない • https://jp.engineering.indeedblog.com/blog/2015/02/util-mmap-でメモリマッピング/ • https://github.com/indeedeng/util/tree/main/mmap
  76. おまけ: それでも Disk からデータは引き出す © Recruit Co., Ltd., 2023. 96

    • 一番検索で良く使うのは検索結果 • ブロックサイズを意識して格納 • ディスクへのアクセスは猛烈に遅いが ディスクキャッシュは早い • トレードオフが十分ならば圧縮して格納する
  77. おまけ: 圧縮のトレードオフ © Recruit Co., Ltd., 2023. 97 読み込み完了 100MB/s

    5,000KB 50ms 25ms 30GB/s =30,720MB/s 2,500KB 50%圧縮 読み込み完了 15ms 10ms=解凍 300倍位速い!
  78. Luceneで利用できる圧縮方式 © Recruit Co., Ltd., 2023. 98 LZ4 (選択可能: DEFLATE,

    Zstandard 等) • Zstandard を利用したいPR (Facebook 製): https://github.com/apache/lucene/pull/439 • https://gigazine.net/news/20120824-dragonquest-backstage-cedec2012/ • 圧縮率は低いが、圧縮速度が速い • 色々なところで使われている: – OS: Linux, FreeBSD – Hadoop, Cassandra – Nintendo Switch – ドラゴンクエストXのセーブデータ
  79. Practice②: 転置インデックスを mmap で実装してみよう © Recruit Co., Ltd., 2023. 100

    • Posting List を mmap で実装し、共有できることを知ろう(共有メモリ) • Update して、他のプロセスからどう見えるか?知ろう 課題のゴール https://docs.python.org/ja/3/library/mmap.html
  80. Practice②: 転置インデックスを mmap で実装してみよう © Recruit Co., Ltd., 2023. 101

    要求される仕様 • 扱う index は Practice①と同じ • 簡単な http サーバーを立ち上げて、検索とupdate が出来るようにしよう • update は Posting List の内容を入れ替えて見る (追加・削除はせず、入れ替え)だけで OK • 検索は • /and?term=T:AAAAA,T:BBBBBで AND 検索 • /or?term=T:AAAA,T:BBBBBで OR 検索 • Update は • /update?term=T:AAAAA&old=D:00023&n ew=D:00032 で D:00023 を D:00032 へ update • 複数プロセスを立ち上げて、それぞれ検索し、他の プロセスが update した内容が反映されるのを確か めよう • Posting List を mmap で実装しよう Index Process Process Process
  81. Practice②: 転置インデックスを mmap で実装してみよう © Recruit Co., Ltd., 2023. 102

    参考資料の解説① • p1_file_index.py と p1_file_search.py とかなり似通った作りになります。 • update 機能は別途切り出して p2_mmap_update.py 等を作成(同名ファイルがあるので注意!) • 新たに http サーバーを作りますが、面倒ならば、p2_mmap_server.py をご参考に • p2_mmap_server.py で各リクエストに対して、以下が動くイメージ: • p2_mmap_index.py • p2_mmap_search.py • p2_mmap_update.py
  82. Practice②: 転置インデックスを mmap で実装してみよう © Recruit Co., Ltd., 2023. 103

    参考資料の解説② • 課題のゴールは以下の作成: 1. p2_mmap_index.py • インデックス作成自体は、不要になります (__main__ を作る必要なしです!) • p1_file_index.py で出力したファイルで OK。 • index_offset.dat • index_posting_list.dat 2. p2_mmap_search.py 3. p2_mmap_update.py 4. p2_mmap_server.py
  83. Practice②: 転置インデックスを mmap で実装してみよう © Recruit Co., Ltd., 2023. 104

    参考資料の解説② • p2_answer_mmap_server.py の使い方 # サーバー立ち上げ(port 番号指定) $ ./p2_answer_mmap_server.py 8000 & # サーバー停止 $ fg (して、Ctrl-C) # ブラウザで確認 • http://localhost:8000/and?term=T:FFFD7,T:FFFDD • http://localhost:8000/or?term=T:FFFD7,T:FFFDD • http://localhost:8000/update?term=T:FFFD7&old=D:097&new=D:098
  84. Practice②: 転置インデックスを mmap で実装してみよう © Recruit Co., Ltd., 2023. 105

    課題のレベル • Level0: p2_answer_mmap_server.py を実行して中身をみて、「課題が何なのか?」だけでも知る • Level1: 疲れたので、p2_mmap_server.py で遊ぶ • Level2: 複数サーバーを立ち上げて、共通メモリの動作を学ぶ • Level3: p2_mmap_index.py と p2_mmap_search.py を作る • Level4: サーバーを自力で作る • Level5: 全部自力で作る # サーバーを複数立ち上げ $ ./p2_answer_mmap_server.py 8000 & $ ./p2_answer_mmap_server.py 8001 & $ ./p2_answer_mmap_server.py 8002 & # あるサーバーから update を実行して、 # 他のサーバーので検索結果が変化するのを確認
  85. Practice② © Recruit Co., Ltd., 2023. 106 👉 • dic_*

    と file_* の欠点が解消されましたか?! • プロセス間通信もできるので複数呼び出し可能になりましたか?!
  86. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 108
  87. Solr や Elasticsearch は何を提供してくれているの? © Recruit Co., Ltd., 2023. 110

    • RESTfull なAPIの提供 • 管理機能の提供 • クラスタリング機能を提供
  88. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 111
  89. 50,241件 10,320件 520件 30,483件 500,020件 1. 同じキーが同じサーバーにいる必要がない ⇒ 「mmap」が別のサーバーにあっても良い【分散】 2.

    マージさえできればよい ⇒ 「mmap」が複数のサーバーにあってもよい【重複】 UNIX BSD mmap kernel Linux 分散検索 © Recruit Co., Ltd., 2023. 112
  90. 分散検索: 概念(Elasticsearch の用語にて) • 各サーバーをノードと呼ぶ • 各ノードは複数のシャード(部分index)をもつ • シャードは以下を提供 •

    可用性(Availability) • 負荷分散(Load Balance) • ドキュメント単位でルーティング • どのシャードに格納するのかは、あなた次第! © Recruit Co., Ltd., 2023. 114
  91. 分散検索: ノード • 各サーバーをノードと呼ぶ • 各ノードは複数のシャード(部分index)をもつ • シャードは以下を提供 • 可用性(Availability)

    • 負荷分散(Load Balance) • ドキュメント単位でルーティング • どのシャードに格納するのかは、あなた次第! © Recruit Co., Ltd., 2023. 115
  92. 分散検索: シャード • 各サーバーをノードと呼ぶ • 各ノードは複数のシャード(部分index)をもつ • シャードは以下を提供 • 可用性(Availability)

    • 負荷分散(Load Balance) • ドキュメント単位でルーティング • どのシャードに格納するのかは、あなた次第! A Shard C Shard B Shard C Shard A Shard B Shard 116 © Recruit Co., Ltd., 2023.
  93. • 各サーバーをノードと呼ぶ • 各ノードは複数のシャード(部分index)をもつ • シャードは以下を提供 • 可用性(Availability) • 負荷分散(Load

    Balance) • ドキュメント単位でルーティング • どのシャードに格納するのかは、あなた次第! シャード A, B, C 全部が生存 欠損なしで 検索続行 分散検索: 可用性(Availability) 117 A Shard C Shard B Shard C Shard A Shard B Shard ✗ © Recruit Co., Ltd., 2023.
  94. • 各サーバーをノードと呼ぶ • 各ノードは複数のシャード(部分index)をもつ • シャードは以下を提供 • 可用性(Availability) • 負荷分散(Load

    Balance) • ドキュメント単位でルーティング • どのシャードに格納するのかは、あなた次第! シャード A と B に関する 検索 シャード A と B に関する 検索 シャード A と B に関する 検索 118 A Shard C Shard B Shard C Shard A Shard B Shard 分散検索: 負荷分散(Load Balance) © Recruit Co., Ltd., 2023.
  95. • 各サーバーをノードと呼ぶ • 各ノードは複数のシャード(部分index)をもつ • シャードは以下を提供 • 可用性(Availability) • 負荷分散(Load

    Balance) • ドキュメント単位でルーティング • どのシャードに格納するのかは、あなた次第! hash(XXX) mod (# of Shard) = C Doc ID: XXX 119 A Shard C Shard B Shard C Shard A Shard B Shard 分散検索: ルーティング © Recruit Co., Ltd., 2023.
  96. 分散検索 • 各サーバーをノードと呼ぶ • 各ノードは複数のシャード(部分index)をもつ • シャードは以下を提供 • 可用性(Availability) •

    負荷分散(Load Balance) • ドキュメント単位でルーティング • どのシャードに格納するのかは、あなた次第! 120 A Shard C Shard B Shard C Shard A Shard B Shard © Recruit Co., Ltd., 2023.
  97. 分散検索: Index の構成 • サーバー(シャード)は本来非常に多い(ここでは3台) • シャードに含まれるドキュメント数には上限有り(100万等) • どのサーバーも、自分の担当の検索は非常に高速(対象が100万位しかないから) •

    入り切らなくなってきたら、サーバーを足す (スケールアップではなく、スケールアウト) < 1000,000 < 1000,000 < 1000,000 © Recruit Co., Ltd., 2023. 121 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円
  98. 分散検索: Two Phase Search, query and fetch • query phase:

    どのサーバーにマッチする結果がどれだけあるのか? ⇒ メモリ上+ネットワークトラフィック小で解決 • fetch phase: 見つけた結果を整形(スニペット生成、等)して返却結果を作成 ⇒ 高負荷な処理を実行 122 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  99. 分散検索: Two Phase Search, query and fetch 【重要】各サーバは他のサーバーの安いアイスクリームを知らない!! クエリー:アイスクリーム ORDER

    BY 安い順 LIMIT 3 123 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  100. 分散検索: Two Phase Search, query and fetch クエリー:アイスクリーム ORDER BY

    安い順 LIMIT 3 [50, 120, 200] [10, 220, 320] [300, 500, 720] [10, 50, 120] 124 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  101. 分散検索: Two Phase Search, query and fetch クエリー:アイスクリーム ORDER BY

    安い順 LIMIT 3 [10, 50, 120] 125 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  102. 分散検索: Two Phase Search, query and fetch Q: 100位〜102位まで取ってくるには? クエリー:アイスクリーム

    ORDER BY 安い順 LIMIT 3 OFFSET 100 A: 各サーバーから102件取得してくる 126 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  103. 分散検索: Two Phase Search, query and fetch Q: 嘘でしょ? クエリー:アイスクリーム

    ORDER BY 安い順 LIMIT 3 OFFSET 100 A: 本当です。 127 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  104. 分散検索: Two Phase Search, query and fetch Q: 事前に準備とかできないの? クエリー:アイスクリーム

    ORDER BY 安い順 LIMIT 3 OFFSET 100 A: できないです… 128 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  105. 分散検索: Two Phase Search, query and fetch クエリー:(アイスクリーム AND すいか味)ORDER

    BY 安い順 LIMIT 3 OFFSET 100 129 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023.
  106. 分散検索: Two Phase Search, query and fetch クエリー:(アイスクリーム AND すいか味)ORDER

    BY 安い順 LIMIT 3 OFFSET 100 130 Shard A アイスクリーム 200円 50円 850円 120円 Shard B アイスクリーム 320円 220円 10円 900円 Shard C アイスクリーム 850円 300円 500円 720円 © Recruit Co., Ltd., 2023. 【重要】もちろんキャッシュが使えて、最重要!
  107. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 131
  108. Practice③: 分散検索を実装してみよう © Recruit Co., Ltd., 2023. 133 • 分散検索がどのように動くのか?理

    解しよう • 可用性を上げるにはどうしたらよい か?体験しよう • スケールすると(インデックスサイ ズが大きくなると)何が大変になる か?理解しよう 課題のゴール Index ① Request /and?term=AAAAA,BBBBB ② 分散検索 /_and?term=AAAAA ③ local 検索 ③ local 検索 ② 分散検索 /_and?term=BBBBB
  109. Practice③: 分散検索を実装してみよう © Recruit Co., Ltd., 2023. 134 要求される仕様 •

    扱う index は Practice②と同じ • 通信は http • 分散検索は • /and?term=AAAAA,BBBBBで AND 検索 • /or?term=AAAA,BBBBBで OR 検索 • 分散させずに、ローカルで解決する検索は • /_and?term=AAAAA,BBBBBで AND 検索 • /_or?term=AAAA,BBBBBで OR 検索 • マージ処理(実際の AND と OR の処理)はリク エストを受け取ったサーバーで OK • 分散検索時には、各ノードで一つの term に対す る処理(単に Posting List を返すだけの処理)だ け行えば OK(_and でも _or でもどちらを使っ ても構わない) • term に従ってサーバーを固定してみる Index ① Request /and?term=AAAAA,BBBBB ② 分散検索 /_and?term=AAAAA ③ local 検索 ③ local 検索 ② 分散検索 /_and?term=BBBBB
  110. Practice③: 分散検索を実装してみよう © Recruit Co., Ltd., 2023. 135 参考資料の解説① •

    p2_mmap_server.py と p2_mmap_search.py を改造すれば OK • /_and と /_or は p2_mmap_server.py の AND 処理と OR 処理と同じ • 今回のサーバーは ThreadingHTTPServer を使わないと詰まってしまう(何故か?は調べてみて下さい) • NODE は固定で OK NODES = [ ‘localhost:8000’, ‘localhost:8001’, ‘localhost:8002’, ] ※ はじめは NODE を 1 個で試してみよう! • and のリクエストを受け取ると、各 term 毎に Posting List を各サーバーに http で要求し、全ての結果をマージ(AND or OR)する • p2_mmap_server.py の変更点: • _and と _or はこれまでの and と or • /and と /or を新たに追加 • p2_mmap_server.py の変更点: • 新たに分散検索を行う search と同じ機能(候補の Posting List のリストを取得)を実装
  111. Practice③: 分散検索を実装してみよう © Recruit Co., Ltd., 2023. 136 課題のレベル •

    Level0: p3_answer_dist_server.py を実行して中身をみて、「課題が何なのか?」だけでも知る • Level1: 疲れたので、 p3_answer_dist_server.py で遊ぶ • Level2: ログが分かりにくいので、分かりやすくする • Level3: p3_dist_server.py を作る • Level4: p3_dist_search.pyを作る • Level5: 1台サーバーを落としても、動作するように変更する • Level6: 各サーバーへのリクエストを非同期で投げる • Level∞: サーバー単位でインデックスを分割してみよう これであなたのサーバーも Elasticsearch!!
  112. Practice③: 分散検索を実装してみよう © Recruit Co., Ltd., 2023. 137 # サーバーを複数立ち上げ

    $ ./p3_answer_dist_server.py 8000 & $ ./p3_answer_dist_server.py 8001 & $ ./p3_answer_dist_server.py 8002 & # あるサーバーから search を実行して、 # 各サーバーがリクエストを受け取り、 # これまでと結果が変わらないことを確認 # ブラウザで確認 • http://localhost:8000/and?term=T:FFFD7,T:FFFDD • http://localhost:8000/or?term=T:FFFD7,T:FFFDD • http://localhost:8000/update?term=T:FFFD7&old=D:097&new=D:098
  113. Practice③ © Recruit Co., Ltd., 2023. 138 👉 • 分散処理を作れた感じがつかめましたか?

    • Merge の処理がヘビーになる感じがつかめましたか?
  114. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 141
  115. © Recruit Co., Ltd., 2023. 142 転置インデックス 50,241件 10,320件 30,483件

    UNIX BSD mmap kernel Linux 520件 1 1 1 2 3 3 4 5 5 6 6 7 500,020件 T:00000 T:00001 T:00002 T:FFFFF 〜 MD5 or SHA-3 で出来なくもない!!
  116. TokenStream = Term(= 文字列 + フィールド)の stream + アトリビュー ト

    • https://gitbox.apache.org/repos/asf?p=lucene.git;a=blob;f=lucene/core/src/java/org/apache/lucene/index/Term.java • https://gitbox.apache.org/repos/asf?p=lucene.git;a=blob;f=lucene/core/src/java/org/apache/lucene/analysis/TokenStream.java これはどう作るの?! Lucene の世界では Tokenizer が分割をしてくれる! © Recruit Co., Ltd., 2023. 143 Lucene の世界の Term と Token
  117. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 144 Lucene の Tokenizer
  118. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 145 Lucene の Tokenizer
  119. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 146 Lucene の Tokenizer
  120. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 147 Lucene の Tokenizer
  121. 英語の Tokenize は超簡単 “Elasticsearch is a distributed, RESTful search and

    analytics engine capable of solving a growing number of use cases.” WhitespaceTokenizer “Elasticsearch is a distributed, RESTful search and analytics engine capable of solving a growing number of use cases.” © Recruit Co., Ltd., 2023. 148
  122. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 150 Lucene の Tokenizer
  123. Ngram Tokenizer 一定の長さの文字列単位で分割「敵に塩を送る」 • Unigram: 1文字単位 ⇒ 「敵」「に」「塩」「を」「送」「る」 • Bigram:

    2文字単位 ⇒「敵に」「に塩」「塩を」「を送」「送る」 • Trigram: 3文字単位 ⇒「敵に塩」「に塩を」「塩を送」「を送る」 Q: Bigram で「塩」を検索可能?! A: No… 検索できない ⇒ N-gram ならば 2-1gram © Recruit Co., Ltd., 2023. 151
  124. Ngram Tokenizer: 比較 Unigram vs Trigram 「敵に塩を」 • 長さ3以上の term

    ならできることに変わりはなし(「塩」は検索できない) • どんどん大きくなると、完全一致のようになり、検索とは何か? という問題になる(6-gramでは「敵に塩を送」さえ検索できない) • 速度には差がでる(Unigram より Trigram の方が速い) 4個のタームのマージ vs 2個のタームのマージ 「敵」「に」「塩」「を」vs 「敵に塩」「に塩を」 ※「に」「を」のPosting List などは非常に大きい(はず) © Recruit Co., Ltd., 2023. 152
  125. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 153 Lucene の Tokenizer
  126. Japanese Tokenizer (Kuromoji) • 形態素解析エンジン • 辞書ベースで分割 • 「敵に塩を送った」 Surface

    form Part-of-Speech Base form Reading Pronunciati on 敵 名詞,一般,*,* 敵 テキ テキ に 助詞,格助詞,一般,* に 二 二 塩 名詞,一般,*,* 塩 シオ シオ を 助詞,格助詞,一般,* を ヲ ヲ 送っ 動詞,自立,*,* 送る オクッ オクッ た 助動詞,*,*,* た タ タ © Recruit Co., Ltd., 2023. 154
  127. Ngram vs 形態素解析 それぞれ、良いところと悪いところがある 解決策:両方をもつハイブリッド index 効果\手法 Ngram 形態素解析 取りこぼし:

    「目黒」で「中目黒」は hit? Good! = hit Bad… = No hit レレバンシー: 「京都」で「東京都」が hit? Bad… = hit Good! = No hit Index サイズ Bad… = 大 Good! = 小 © Recruit Co., Ltd., 2023. 155
  128. Sudachi(形態素解析機) 最近は「sudachi」が人気 © Recruit Co., Ltd., 2023. 156 https://github.com/WorksApplications/Sudachi •

    A: 医薬/品/安全/管理/責任/者 • B:医薬品/安全/管理/責任者 • C:医薬品安全管理責任者
  129. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 157 Lucene の Tokenizer
  130. • ClassicTokenizerFactory • EdgeNGramTokenizerFactory • HMMChineseTokenizerFactory • ICUTokenizerFactory • JapaneseTokenizerFactory

    • KeywordTokenizerFactory • LetterTokenizerFactory • LowerCaseTokenizerFactory • NGramTokenizerFactory • PathHierarchyTokenizerFactoryPatternTokenizerFactory • StandardTokenizerFactory • ThaiTokenizerFactory • UAX29URLEmailTokenizerFactory • UIMAAnnotationsTokenizerFactory • UIMATypeAwareAnnotationsTokenizerFactory • WhitespaceTokenizerFactory • WikipediaTokenizerFactory © Recruit Co., Ltd., 2023. 159 Lucene の Tokenizer 「京都」で「東京都」
  131. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 161
  132. 理想の検索結果 C 実際の検索結果 B A 再現率= C A 適合率= B

    A © Recruit Co., Ltd., 2023. 165 適合率と再現率
  133. F-measure の値が大きければ、バランスのとれた良い結果 F-measure = 適合率 ( 1 + 再現率 1

    ) 2 © Recruit Co., Ltd., 2023. 172 F-measure:適合率と再現率のバランス
  134. 理想の検索結果 C 実際の検索結果 B A © Recruit Co., Ltd., 2022.

    174 実際の結果と理想の結果を全部?
  135. { "_score" : 656.68774, "_source" : { "nikki_kuromoji" : "雪の目黒",

    "nikki_ngram" : "雪の目黒“ } }, { "_score" : 23.361103, "_source" : { "nikki_kuromoji" : "雨の中目黒", "nikki_ngram" : "雨の中目黒“ } } © Recruit Co., Ltd., 2022. 181 「Elasticsearch は何か出しているよ?」
  136. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 182
  137. TF-IDF and Okapi BM25b • 何なの? – アルゴリズム • 入力は?

    – 文章の集合 • 出力は? – 各文章の各単語にスコアを付与 • スコアは何を表すの? – 各文章の各単語の重要度 © Recruit Co., Ltd., 2023. 184
  138. TF-IDF and Okapi BM25b • 何なの? – アルゴリズム • 入力は?

    – 文章の集合 • 出力は? – 各文章の各単語にスコアを付与 • スコアは何を表すの? – 各文章の各単語の重要度 Linux: 0.3 Windows:0.1 ぶり: 4.2 Linux: 1.3 Windows:2.3 まぐろ: 3.8 Linux: 5.4 FreeBSD:10.3 大根: 2.1 © Recruit Co., Ltd., 2023. 185
  139. 2つの文章での「Linux」 Linux Linux(リナックス、 他の読みは後述)は、 UnixライクなOSカー ネルである)。 OS オペレーティングシステム(英語: Operating System、

    OS、オーエス)と は、コンピュータのオペレーション (操作・運用・運転)のために、ソ フトウェアの中でも基本的、中核的 位置づけのシステムソフトウェアで ある。通常、OSメーカーが組み上げ たコンピュータプログラムの集合と して、作成され提供されている。 … フリーなOSは、Linux、FreeBSD… … どちらの文章が「Linux」に関して重要度が高いか?! = 価値が高いか?! < 直感的 ? 定量的 © Recruit Co., Ltd., 2023. 187
  140. TF-IDF • TF=Term Frequency=Termの頻度 あるドキュメントの中で、どれだけその Term が出現したか? ⇒ いっぱい出てくる単語は重要だ •

    IDF:IDF=Inverse Document Frequency=逆文章頻度 ある Term が全体の中でどれほどレアか? ⇒ レアな単語は重要だ • TF-IDF = TF×IDF あるドキュメント D の中の、Term T がどれほど重要か?は、 (TF: D の中での T の頻出度)×(IDF: T の全体でのレア度) © Recruit Co., Ltd., 2023. 189
  141. TF-IDF:TF=Term Frequency=Termの頻度 Linux Linux(リナックス、 他の読みは後述)は、 UnixライクなOSカー ネルである)。 Linux: 2 リナックス:

    1 読み: 1 Unix: 1 一つの文章に現れる Term の出現回数 沢山出現すれば それだけ重要 © Recruit Co., Ltd., 2023. 190
  142. TF-IDF:IDF=Inverse Document Frequency=逆文章頻度 • Linux • である IDF = log

    Term T が現れる文章数 総文章数 • 野菜 • である • 野菜 • がある • Linux • がある • 肉 • である IDF(Linux) = log 2 5 = 0.39 IDF(である) = log 3 5 = 0.22 > 定量的 Linux である © Recruit Co., Ltd., 2023. 191
  143. TF-IDF:IDF=Inverse Document Frequency=逆文章頻度 • 逆である意味は?! – 現れるドキュメントが、多ければ多いほど、重要度を下げたい (逆比例:「である」等は小、「しめ鯖」等は大) • log

    を取る意味は?! – 非常に大きな総文章数の場合のためのノーマライズ (ノーマラナイズしないとTFの意味がなくなる) © Recruit Co., Ltd., 2023. 192 IDF = log Term T が現れる文章数 総文章数
  144. TF-IDF あるドキュメント D の中の、 Term T がどれほど重要か?は、 (TF: D の中での

    T の頻出度) × (IDF: 文章全体での T のレア度) © Recruit Co., Ltd., 2023. 193
  145. TF-IDFの注意(良いところ) あるドキュメント D に対して Term が異なれば、TF-IDFも異なる しめ鯖 ⇒ 0.8492 Linux

    ⇒ 0.0234 月刊 Linux 2018/04/24 号 今月の月刊 Linux では、 カーネルの特集を… …ところでしめ鯖は美味 しいですね。僕も… © Recruit Co., Ltd., 2023. 194
  146. BM25: TF-IDFが不都合な場合 Linux Linux(リナックス、 他の読みは後述)は、 UnixライクなOS カーネルである)。 Linux Linux Linux

    Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux … TF(Linux) = 14,352 TF(Linux) =2 > これは不都合 注)IDFはどちらも一緒 © Recruit Co., Ltd., 2023. 196
  147. BM25: TF-IDFが不都合な場合 Linux Linux(リナックス、 他の読みは後述)は、 UnixライクなOS カーネルである)。 Linux Linux Linux

    Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux Linux … TF(Linux) = 14,352 TF(Linux) =2 > これは不都合 注)IDFはどちらも一緒 © Recruit Co., Ltd., 2022. 197 単語数! 14,352 > 23
  148. BM25の定義 ・TF = 単語(Linux)の出現数 ・IDF = 単語レア度(Linuxのレア度) ・DL = ドキュメントの単語数(23)

    ・avgDL = 全てのドキュメントの単語数の平均 (=320) ・2つのパラメータk1, b k1 は 2 が最も最適と言われている b は 0.75 が最も最適と言われている BM25(Linux) = TF × IDF × TF+k1 ×(1-b+b× ) k1 + 1 avgDL DL © Recruit Co., Ltd., 2023. 198 Linux Linux(リナックス、 他の読みは後述)は、 UnixライクなOS カーネルである)。
  149. BM25の意味 BM25(Linux) = TF × IDF × TF+k1 ×(1-b+b× )

    k1 + 1 avgDL DL 単語を沢山もつ場合は 一つの単語の価値を減点↓ 単語を沢山もつ場合は減点だが それが平均に対して小さければ 加点↑ ・TF = 単語の出現数 ・IDF = 単語レア度 ・DL = ドキュメントの単語数 ・avgDL = 全てのドキュメントの単語数の平均 © Recruit Co., Ltd., 2023. 199 単に単語を沢山もつ場合は 減点↓
  150. BM25 and TF-IDF Linux はフリー のOSカーネル であり、… FreeBSDは Unix系のオー プンソースの…

    今年のじゃがい もはとても不作 だった。 日本ではこの時 期のブリを特に 「寒ブリ」と • Linux: 23 • OS: 11 • カーネル: 17 • は: 0.331 • あり: 3.65 • の: 0.003 • です: 0.0001 • は: 0.000053 • の: 0.023 • FreeBSD: 65 • OS: 9 • カーネル: 5 • じゃがいも: 42 • 不作: 58 • 今年: 2 • だった:0.003 • は: 0.00428 • の: 0.00084 • 寒ブリ: 90 • 日本: 3 • 時期: 1.8 • 特に: 0.2 • の: 0.00189 レアではないワードはスコア小 特徴的 Term はスコア大 © Recruit Co., Ltd., 2023. 200
  151. { "_score" : 656.68774, "_source" : { "nikki_kuromoji" : "雪の目黒",

    "nikki_ngram" : "雪の目黒“ } }, { "_score" : 23.361103, "_source" : { "nikki_kuromoji" : "雨の中目黒", "nikki_ngram" : "雨の中目黒“ } } © Recruit Co., Ltd., 2023. 204 「Elasticsearch は何か出しているよ?」⇒ Okapi BM25b
  152. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 208
  153. そんなあなたへ nDCG • nDCG (= normalized Discounted Cumulative Gain) •

    直訳すると「正規化された効果減少の累積報酬」 • ランキングの精度評価指標 • ランキングを行うシステムの評価に利用できるので、 特に、検索だけがターゲットではない。 例)レコメンドシステム、広告システム • nDCG も理想のランキングとの乖離具合を数値化 © Recruit Co., Ltd., 2023. 209
  154. nDCG の仲間達 • nDCG • Precision@k • mAP (Mean Average

    Precision) • MMR (Maximal Marginal Relevance) © Recruit Co., Ltd., 2023. 210
  155. nDCG:実際のカスタマーの行動 クエリー「からし明太子」 ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上

    辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 © Recruit Co., Ltd., 2023. 214
  156. 表示された クリックされた CTR と CVR PV (Page View): 表示された回数 CTR

    = 表示された回数 クリックされた回数 (Click Through Rate) © Recruit Co., Ltd., 2023. 218
  157. 表示された クリックされた 購入された CTR と CVR PV (Page View): 表示された回数

    CTR = 表示された回数 クリックされた回数 (Click Through Rate) CVR = 表示された回数 購入された回数 (Conversion Rate) ※何を Conversion と考えるか?はサービス次第 © Recruit Co., Ltd., 2023. 219
  158. nDCG:実際のカスタマーの行動 クエリー「からし明太子」 ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上

    辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 © Recruit Co., Ltd., 2023. 220
  159. nDCG:実際のカスタマーの行動 クエリー「からし明太子」 ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上

    辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 2位なのに 頑張っている 4位なのに断トツ?! 1位なのに普通かな ③と④は上下反転?! © Recruit Co., Ltd., 2023. 222
  160. nDCG:実際の結果 クエリー「からし明太子」 ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上

    辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 © Recruit Co., Ltd., 2023. 223
  161. nDCG:理想の結果 クエリー「からし明太子」 ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上

    辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 © Recruit Co., Ltd., 2023. 224
  162. nDCG:理想の結果 クエリー「からし明太子」 ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上

    辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 元々1位だったアド バンテージを考慮 していない © Recruit Co., Ltd., 2023. 225
  163. nDCG:スコア ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上 辛子明太子

    1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 S1=150 S2=110 S3=45 S5=60 S4=250 1. 各順位の結果はスコアをもっている (例: クリック数+購入数×100) © Recruit Co., Ltd., 2023. 227
  164. nDCG:Top 5 のスコア ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック

    ④【送料無料】極上 辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 S1=150 S2=110 S3=45 S5=60 S4=250 2. 各順位に応じて、ペナルティ を与え、全体のスコアを計算 DCG5= S1 + + + … log2 S2 log3 S3 © Recruit Co., Ltd., 2023. 228
  165. nDCG:理想の結果のDCG=iDCG (ideal DCG) ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック

    ④【送料無料】極上 辛子明太子 1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 3. スコア順の DCG を求める = iDCG ⇒ DCG が MAX DCG5= S4 + + + … log2 S1 log3 S2 S4=250 S1=150 S2=110 S3=45 S5=60 © Recruit Co., Ltd., 2023. 229
  166. nDCG:ちょっと改善してみる ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上 辛子明太子

    1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 © Recruit Co., Ltd., 2023. 232
  167. nDCG:ちょっと改善してみる ① 辛子明太子 ゴールデンサイズ ② 明太子!【送料無料】てんこ盛り ③ からし明太子高菜80g×2パック ④【送料無料】極上 辛子明太子

    1kg ⑤ パスタソース 逸品 からし明太子 クリック 購入 クリック 購入 クリック 購入 クリック 購入 クリック 購入 © Recruit Co., Ltd., 2023. 233
  168. 実際の改善では? • 「ドキュメントは新しい方が良さそうだ」 ⇒ 登録日時を考慮 • 「このクエリーのときにはこういう価格帯が良さそうだ」 ⇒ 価格帯を考慮 •

    「あまり見られていないドキュメントにも可能性があるのでは?」 ⇒ 公平性を考慮 • 「ユーザーの評価も含めるべきではないか?」 ⇒ ユーザー評価を考慮 © Recruit Co., Ltd., 2023. 239 既成概念や過去の成功体験はあまり役に立たない ⇒ A/B テストの繰り返し
  169. アジェンダ • 検索とは何か? • 転置インデックスとは何か? • 転置インデックスを実装するには? • 分散検索とは何か? •

    Term とは何か? • 良い検索結果とは何か? • 検索結果のスコアとは何か? • 良いランキングとは何か? • 良いランキングを作るとは何か? © Recruit Co., Ltd., 2023. 241