Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Building Security Data Lake
Search
Richard Fan
December 13, 2023
Technology
0
17
Building Security Data Lake
vBrownBag podcast
Building Security Data Lake
https://youtu.be/6qQ7_asdI4I?si=CSsn0jz2vo00Y02Q
Richard Fan
December 13, 2023
Tweet
Share
More Decks by Richard Fan
See All by Richard Fan
JAWS Pankration 2024 - Achieve software supply chain security using AWS Nitro Enclaves and GitHub Actions
richardfan1126
0
46
Preserving privacy on data collaboration with AWS Clean Rooms
richardfan1126
0
49
Achieve software supply chain security using AWS Nitro Enclaves and GitHub Actions
richardfan1126
0
140
When Data Collaboration Meets Privacy: Privacy-enhancing Technologies on AWS
richardfan1126
0
55
AWS Security Hub Central Configuration - An Easy way to monitor your Organization security posture
richardfan1126
0
67
Create your first AWS Nitro Enclaves application
richardfan1126
0
59
Other Decks in Technology
See All in Technology
Red Hat OpenStack Services on OpenShift
tamemiya
0
110
CDK対応したAWS DevOps Agentを試そう_20260201
masakiokuda
1
320
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
13k
モダンUIでフルサーバーレスなAIエージェントをAmplifyとCDKでサクッとデプロイしよう
minorun365
4
210
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
240
コスト削減から「セキュリティと利便性」を担うプラットフォームへ
sansantech
PRO
3
1.5k
What happened to RubyGems and what can we learn?
mikemcquaid
0
300
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
顧客との商談議事録をみんなで読んで顧客解像度を上げよう
shibayu36
0
250
クレジットカード決済基盤を支えるSRE - 厳格な監査とSRE運用の両立 (SRE Kaigi 2026)
capytan
6
2.8k
顧客の言葉を、そのまま信じない勇気
yamatai1212
1
360
Featured
See All Featured
Exploring anti-patterns in Rails
aemeredith
2
250
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
From π to Pie charts
rasagy
0
120
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.4k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Designing for Timeless Needs
cassininazir
0
130
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
69
Test your architecture with Archunit
thirion
1
2.2k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Faster Mobile Websites
deanohume
310
31k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Transcript
Building Security Data Lake Richard Fan March 29, 2023
EXPRESSVPN Richard Fan Security Engineer from ExpressVPN A Builder and
Tech advocate AWS Community Builder • https://dev.to/richardfan1126 • https://medium.com/@richardfan1126 • https://github.com/richardfan1126 Who am I?
Security Data
EXPRESSVPN What is security data? Security Data
EXPRESSVPN Why do we need Security logs? • Detect threat
• Incident response • Compliance • Vulnerability management Security Data
EXPRESSVPN Security Data Storing (or Not storing) locally • No
correlation • Difficult to track • Time consuming during incident response Send to SIEM • Centralized • Analytics / threat detection • Strong query capability Capturing security logs
EXPRESSVPN The growing amount/complexity of security logs • Shift-left •
Adoption of cloud • 2 common approaches ◦ Drop less-important events ◦ Scale-up SIEM and send all events to it Security Data
EXPRESSVPN SIEM is not an ultimate solution • Too expensive
• Short retention period • Difficult to integrate with other data processor Security Data
Data Lake
EXPRESSVPN Data Lake comes in Data Lake • Store data
in large scale • Centralize data repository • Turn raw data into useful data • NOT a data archive • NOT a database (Security) Data Lake Security Data Lake • Threat detection • Event context • Real-time alert
EXPRESSVPN How to start? • Identify all your data sources
• Identify ingestion methods • Evaluate your situation ◦ Engineering ◦ Threat hunting ◦ SIEM options • Decide where SIEM fits in Data Lake
EXPRESSVPN Connector split Source split Data Lake SIEM in Security
data lake
EXPRESSVPN Data lake to SIEM SIEM to Data lake Data
Lake SIEM in Security data lake
Threat hunting
EXPRESSVPN Threat hunting life cycle in data lake Threat hunting
EXPRESSVPN Detection as Code • Better documentation • Code repository
/ Code Review (GitOps) • Common language • Vendor agnostic Threat hunting
EXPRESSVPN Detection as Code - Sigma Threat hunting
EXPRESSVPN Detection as Code - Sigma Threat hunting Splunk Elasticsearch
Our Story
EXPRESSVPN How do we build security data lake? Technology •
Ingestion • Storage ◦ S3 • Analytics • Detection-as-code ◦ Sigma Our story
EXPRESSVPN How do we build security data lake? Company •
SOC team • IT team • Security Engineering team • Cross-team collaboration • Security knowledge Our story
EXPRESSVPN Takeaway • Evaluate your current state • Start small
• Estimate cost • Embrace IaC / DaC • Don’t forget about people Our story
Thank you