$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第十章-教師なし学習【数学嫌いと学ぶデータサイエンス・統計的学習入門】
Search
Ringa_hyj
July 22, 2020
Technology
0
92
第十章-教師なし学習【数学嫌いと学ぶデータサイエンス・統計的学習入門】
第十章【数学嫌いと学ぶデータサイエンス・統計的学習入門】
Ringa_hyj
July 22, 2020
Tweet
Share
More Decks by Ringa_hyj
See All by Ringa_hyj
DVCによるデータバージョン管理
ringa_hyj
0
190
deeplakeによる大規模データのバージョン管理と深層学習フレームワークとの接続
ringa_hyj
0
83
Hydraを使った設定ファイル管理とoptunaプラグインでのパラメータ探索
ringa_hyj
0
150
ClearMLで行うAIプロジェクトの管理(レポート,最適化,再現,デプロイ,オーケストレーション)
ringa_hyj
0
150
Catching up with the tidymodels.[Japan.R 2021 LT]
ringa_hyj
3
850
多次元尺度法MDS
ringa_hyj
0
320
因子分析(仮)
ringa_hyj
0
160
階層、非階層クラスタリング
ringa_hyj
0
140
tidymodels紹介「モデリング過程料理で表現できる説」
ringa_hyj
0
460
Other Decks in Technology
See All in Technology
新 Security HubがついにGA!仕組みや料金を深堀り #AWSreInvent #regrowth / AWS Security Hub Advanced GA
masahirokawahara
1
2k
大企業でもできる!ボトムアップで拡大させるプラットフォームの作り方
findy_eventslides
1
770
SSO方式とJumpアカウント方式の比較と設計方針
yuobayashi
7
680
AI 駆動開発勉強会 フロントエンド支部 #1 w/あずもば
1ftseabass
PRO
0
360
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
打 造 A I 驅 動 的 G i t H u b ⾃ 動 化 ⼯ 作 流 程
appleboy
0
330
5分で知るMicrosoft Ignite
taiponrock
PRO
0
360
Lookerで実現するセキュアな外部データ提供
zozotech
PRO
0
100
LLM-Readyなデータ基盤を高速に構築するためのアジャイルデータモデリングの実例
kashira
0
250
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
7
1.6k
Kubernetes Multi-tenancy: Principles and Practices for Large Scale Internal Platforms
hhiroshell
0
120
Databricks向けJupyter Kernelでデータサイエンティストの開発環境をAI-Readyにする / Data+AI World Tour Tokyo After Party
genda
1
120
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
Building Applications with DynamoDB
mza
96
6.8k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
GitHub's CSS Performance
jonrohan
1032
470k
How STYLIGHT went responsive
nonsquared
100
6k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Practical Orchestrator
shlominoach
190
11k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Writing Fast Ruby
sferik
630
62k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Transcript
@Ringa_hyj 日本一の数学嫌いと学ぶ データサイエンス ~第十章:教師なし学習~
対象視聴者: 数式や記号を見ただけで 教科書を閉じたくなるレベル , , C , ,
教師なし学習 ・主成分分析 ・寄与度 ・クラスタリング ・k平均 ・階層的
教師なし学習
・教師なし学習 教師なし学習とは 教師ありと違い精度を確かめる方法がない データから知見を引き出すために使われる しかし、テストでの性能を測れないので汎化性に期待はできない 教師なし学習としては ・主成分分析 ・クラスタリング が有名である
主成分分析
・主成分分析 6章で主成分分析の求め方を含めて紹介した データにp変数あれば、2変数plotは p(p-1)/2 個の図になる p=10なら45枚の図 すべて確認するのは大変なので主成分に要約する 第一主成分は以下により得られる max 11~1
1 ා =1 =1 1 2 =1 1 2 = 1 ただし制約 第二主成分は第一主成分に直交(無相関)する という制約が付く
・主成分分析 ・主成分が最良のM次元近似である 主成分とは、各データから近いように近似していく方法 1~M次元の主成分ベクトルと係数ベクトルは最良のM次元近似である Mを大きくしていけばp次元データに同じようになっていく ・標準化 主成分分析は事前に中心化する手法である 標準化すべきか、という議論については、単位が異なるならば行うことが推奨 単位が等しい中で標準化するのは比較できなくなるのでNG ・パッケージによる出力の違い
係数ベクトル、主成分スコアベクトルの符号がパッケージによって異なるが、 これは主成分軸の方向を表すものであり、符号以外は一致する このことを「符号を除いた一意性を持つ」という
寄与度
・主成分分析 どれだけ情報が失われているか 分散の割合 寄与率 によって考える データセット全体の分散の総和 =1 Var =
ා =1 1 =1 2 第m主成分での分散の総和は 1 =1 2 = 1 ා =1 =1 2 以上から第m主成分が全体から抽出できた情報量は以下 =1 =1 2 =1 =1 2
クラスタリング k平均
・クラスタリング クラスタリングには有名なものに ・K平均クラスタリング・・・クラスタを指定 ・階層的クラスタリングがある・・・デンドログラムからクラスタ数を決める
・クラスタリング ・K平均クラスタリング データはKクラスのいずれかに属する C1 ⋁ C2 ⋁ … Ck =
(1~n) 一つのデータの所属クラスが重複することはない K≠K’ で Ck ∧ Ck’ = ∅ iがCkのデータであるとき、 i∉Ck と表示する
・クラスタリング 良いクラスタリングの結果とは・・・クラスタ内変動 W(Ck) が小さくなること minimize Σ W(Ck) (k=1~k) C1~Ck クラスタ内変動は
クラスタ内のデータが似ているほどいい → 非類似度を最小化 非類似度をユークリッド二乗距離を使うならば以下のように定式化する |Ck|はK番目のクラスタ内のデータ数 非類似度を計算する対象であるiとi’もK番目クラスに属しているものである(jは変数) = 1 ා ,′∈ =1 − ′ 2
・クラスタリング 全データを全クラスに割り当てて調べる場合、 n個をK個のクラスに分割するのは Kn通り 局所的最適解に陥るが以下の方法を繰りかえすことが主流 ①Kをいくつにするか決める 各データに1~kのクラスをランダムに割り当てる ②各クラスタの重心を求める ③各データと各重心のユークリッド距離を計算し、最も距離の近いクラスに割り当てなおす ②③を重心が変動しなくなるまで繰り返す。
この繰り返しは単調減少の性質を持つことを数式で表現する = 2 ා ∈ =1 − ҧ 2 = 1 ා ,′∈ =1 − ′ 2 クラス内変動が重心からの距離であると考えれば 重心は各データから最も近くなるまで移動するので、 この繰り返しによりクラスタ内変動は減少する ҧ = 1 ∈
クラスタリング 階層的クラスタリング
・クラスタリング Kを決めることは、何かしら仮説がなくては決めにくい そこでデンドログラムを考える 決定木のような樹上図をしており、 分岐点からデータ点までの高さが非類似度を表す 非類似度 ある高さ(非類似度)で切った時、 そのデンドログラムの枝の本数が クラス数となる =
高さを決める必要はあるが クラス数は自動的に決まる
・クラスタリング 各データ点で非類似度を計算する n(n-1)/2 組の計算を行う 非類似の小さいデータペアを繋ぐ 繋いだ後、ペアを一つの値に変換する(連結法は後述) 再度非類似度を計算 これを繰り返す 非類似度でペアに指定されたデータを1つの値に変換する 完全連結法・・・データたち(クラスタ)の最大値で置き換える
単連結法・・・データたちの最小値で置き換える 平均連結法・・・データたちの非類似度の平均で置き換える 重心連結法・・・データの変数の重心で置き換える (デンドログラムが逆転することがあるので非推奨)
・クラスタリング 非類似度にどんな計算を使うか?(今回ユークリッド) 目的によっては距離でなく、相関をとらえる計算を行うべき クラスタリングには複数の決定すべき項目がある(正解はない) 中心化するか、標準化すべきか、類似度の関数、連結法、切断の高さ、初期クラスタ数 その項目によって結果(割り当てられたクラス)の解釈が変化してしまう クラスタにp値を割り当てるクラスタリングや 外れ値に強い混合モデルクラスタリングなどもある。
None
None