Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making Deployments Easy with TF Serving | TF Ev...
Search
Rishit Dagli
May 11, 2021
Programming
1
180
Making Deployments Easy with TF Serving | TF Everywhere India
My talk at TensorFlow Everywhere India
Rishit Dagli
May 11, 2021
Tweet
Share
More Decks by Rishit Dagli
See All by Rishit Dagli
Fantastic Models and Where to Find Them
rishitdagli
0
85
Plant AI: Project Showcase
rishitdagli
0
130
Deploying an ML Model as an API | Postman Student Summit
rishitdagli
0
100
APIs 101 with Postman
rishitdagli
0
92
Deploying Models to production with Azure ML | Scottish Summit
rishitdagli
1
98
Computer Vision with TensorFlow, Getting Started
rishitdagli
0
310
Teaching Your Models to Play Fair | Global AI Student Conf
rishitdagli
1
190
Deploying Models to Production with TF Serving
rishitdagli
1
220
Superpower Your Android apps with ML: Android 11 | Devfest 2020
rishitdagli
1
96
Other Decks in Programming
See All in Programming
Combinatorial Interview Problems with Backtracking Solutions - From Imperative Procedural Programming to Declarative Functional Programming - Part 2
philipschwarz
PRO
0
140
フルサイクルエンジニアリングをAI Agentで全自動化したい 〜構想と現在地〜
kamina_zzz
0
360
Cap'n Webについて
yusukebe
0
160
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
180
DevFest Android in Korea 2025 - 개발자 커뮤니티를 통해 얻는 가치
wisemuji
0
180
2年のAppleウォレットパス開発の振り返り
muno92
PRO
0
180
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
0
1.9k
The Art of Re-Architecture - Droidcon India 2025
siddroid
0
160
AtCoder Conference 2025
shindannin
0
930
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
5.3k
ZJIT: The Ruby 4 JIT Compiler / Ruby Release 30th Anniversary Party
k0kubun
1
320
はじめてのカスタムエージェント【GitHub Copilot Agent Mode編】
satoshi256kbyte
0
160
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
How STYLIGHT went responsive
nonsquared
100
6k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.5k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
BBQ
matthewcrist
89
10k
WENDY [Excerpt]
tessaabrams
9
35k
The #1 spot is gone: here's how to win anyway
tamaranovitovic
1
890
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.3k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
140
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
75
Transcript
Making Deployments Easy with TF Serving Rishit Dagli High School
TEDx, TED-Ed Speaker rishit_dagli Rishit-dagli
“Most models don’t get deployed.”
of models don’t get deployed. 90%
Source: Laurence Moroney
Source: Laurence Moroney
• High School Student • TEDx and Ted-Ed Speaker •
♡ Hackathons and competitions • ♡ Research • My coordinates - www.rishit.tech $whoami rishit_dagli Rishit-dagli
• Devs who have worked on Deep Learning Models (Keras)
• Devs looking for ways to put their model into production ready manner Ideal Audience
Why care about ML deployments? Source: memegenerator.net
None
• Package the model What things to take care of?
• Package the model • Post the model on Server
What things to take care of?
• Package the model • Post the model on Server
• Maintain the server What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale Global availability What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale Global availability Latency What things to take care of?
• Package the model • Post the model on Server
• Maintain the server • API What things to take care of?
• Package the model • Post the model on Server
• Maintain the server • API • Model Versioning What things to take care of?
Simple Deployments Why are they inefficient?
None
Simple Deployments Why are they inefficient? • No consistent API
• No model versioning • No mini-batching • Inefficient for large models Source: Hannes Hapke
TensorFlow Serving
TensorFlow Serving TensorFlow Data validation TensorFlow Transform TensorFlow Model Analysis
TensorFlow Serving TensorFlow Extended
• Part of TensorFlow Extended TensorFlow Serving
• Part of TensorFlow Extended • Used Internally at Google
TensorFlow Serving
• Part of TensorFlow Extended • Used Internally at Google
• Makes deployment a lot easier TensorFlow Serving
The Process
• The SavedModel format • Graph definitions as protocol buffer
Export Model
SavedModel Directory
auxiliary files e.g. vocabularies SavedModel Directory
auxiliary files e.g. vocabularies SavedModel Directory Variables
auxiliary files e.g. vocabularies SavedModel Directory Variables Graph definitions
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving Also supports gRPC
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving
Inference
• Consistent APIs • Supports simultaneously gRPC: 8500 REST: 8501
• No lists but lists of lists Inference
• No lists but lists of lists Inference
• JSON response • Can specify a particular version Inference
with REST Default URL http://{HOST}:8501/v1/ models/test Model Version http://{HOST}:8501/v1/ models/test/versions/ {MODEL_VERSION}: predict
• JSON response • Can specify a particular version Inference
with REST Default URL http://{HOST}:8501/v1/ models/test Model Version http://{HOST}:8501/v1/ models/test/versions/ {MODEL_VERSION}: predict Port Model name
Inference with REST
• Better connections • Data converted to protocol buffer •
Request types have designated type • Payload converted to base64 • Use gRPC stubs Inference with gRPC
Model Meta Information
• You have an API to get meta info •
Useful for model tracking in telementry systems • Provides model input/ outputs, signatures Model Meta Information
Model Meta Information http://{HOST}:8501/ v1/models/{MODEL_NAME} /versions/{MODEL_VERSION} /metadata
Batch Inferences
• Use hardware efficiently • Save costs and compute resources
• Take multiple requests process them together • Super cool😎 for large models Batch inferences
• max_batch_size • batch_timeout_micros • num_batch_threads • max_enqueued_batches • file_system_poll_wait
_seconds • tensorflow_session _paralellism • tensorflow_intra_op _parallelism Batch Inference Highly customizable
• Load configuration file on startup • Change parameters according
to use cases Batch Inference
Also take a look at...
• Kubeflow deployments • Data pre-processing on server🚅 • AI
Platform Predictions • Deployment on edge devices • Federated learning Also take a look at...
bit.ly/tf-everywhere-ind Demos!
bit.ly/serving-deck Slides
Thank You rishit_dagli Rishit-dagli