Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Making Deployments Easy with TF Serving | TF Ev...
Search
Rishit Dagli
May 11, 2021
Programming
1
160
Making Deployments Easy with TF Serving | TF Everywhere India
My talk at TensorFlow Everywhere India
Rishit Dagli
May 11, 2021
Tweet
Share
More Decks by Rishit Dagli
See All by Rishit Dagli
Fantastic Models and Where to Find Them
rishitdagli
0
78
Plant AI: Project Showcase
rishitdagli
0
120
Deploying an ML Model as an API | Postman Student Summit
rishitdagli
0
90
APIs 101 with Postman
rishitdagli
0
80
Deploying Models to production with Azure ML | Scottish Summit
rishitdagli
1
88
Computer Vision with TensorFlow, Getting Started
rishitdagli
0
290
Teaching Your Models to Play Fair | Global AI Student Conf
rishitdagli
1
170
Deploying Models to Production with TF Serving
rishitdagli
1
200
Superpower Your Android apps with ML: Android 11 | Devfest 2020
rishitdagli
1
82
Other Decks in Programming
See All in Programming
ワープロって実は計算機で
pepepper
1
710
Constant integer division faster than compiler-generated code
herumi
2
190
「次に何を学べばいいか分からない」あなたへ──若手エンジニアのための学習地図
panda_program
3
710
Android 15以上でPDFのテキスト検索を爆速開発!
tonionagauzzi
0
190
令和最新版手のひらコンピュータ
koba789
6
2.8k
CEDEC 2025 『ゲームにおけるリアルタイム通信への QUIC導入事例の紹介』
segadevtech
2
750
PHPUnitの限界をPlaywrightで補完するテストアプローチ
yuzneri
0
380
オホーツクでコミュニティを立ち上げた理由―地方出身プログラマの挑戦 / TechRAMEN 2025 Conference
lemonade_37
1
440
11年かかって やっとVibe Codingに 時代が追いつきましたね
yimajo
1
240
実践!App Intents対応
yuukiw00w
1
180
Bedrock AgentCore ObservabilityによるAIエージェントの運用
licux
8
560
Flutterと Vibe Coding で個人開発!
hyshu
1
230
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
332
24k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Balancing Empowerment & Direction
lara
1
530
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Facilitating Awesome Meetings
lara
54
6.5k
Rebuilding a faster, lazier Slack
samanthasiow
83
9.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Practical Orchestrator
shlominoach
190
11k
Gamification - CAS2011
davidbonilla
81
5.4k
Fireside Chat
paigeccino
38
3.6k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Making Deployments Easy with TF Serving Rishit Dagli High School
TEDx, TED-Ed Speaker rishit_dagli Rishit-dagli
“Most models don’t get deployed.”
of models don’t get deployed. 90%
Source: Laurence Moroney
Source: Laurence Moroney
• High School Student • TEDx and Ted-Ed Speaker •
♡ Hackathons and competitions • ♡ Research • My coordinates - www.rishit.tech $whoami rishit_dagli Rishit-dagli
• Devs who have worked on Deep Learning Models (Keras)
• Devs looking for ways to put their model into production ready manner Ideal Audience
Why care about ML deployments? Source: memegenerator.net
None
• Package the model What things to take care of?
• Package the model • Post the model on Server
What things to take care of?
• Package the model • Post the model on Server
• Maintain the server What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale Global availability What things to take care of?
• Package the model • Post the model on Server
• Maintain the server Auto-scale Global availability Latency What things to take care of?
• Package the model • Post the model on Server
• Maintain the server • API What things to take care of?
• Package the model • Post the model on Server
• Maintain the server • API • Model Versioning What things to take care of?
Simple Deployments Why are they inefficient?
None
Simple Deployments Why are they inefficient? • No consistent API
• No model versioning • No mini-batching • Inefficient for large models Source: Hannes Hapke
TensorFlow Serving
TensorFlow Serving TensorFlow Data validation TensorFlow Transform TensorFlow Model Analysis
TensorFlow Serving TensorFlow Extended
• Part of TensorFlow Extended TensorFlow Serving
• Part of TensorFlow Extended • Used Internally at Google
TensorFlow Serving
• Part of TensorFlow Extended • Used Internally at Google
• Makes deployment a lot easier TensorFlow Serving
The Process
• The SavedModel format • Graph definitions as protocol buffer
Export Model
SavedModel Directory
auxiliary files e.g. vocabularies SavedModel Directory
auxiliary files e.g. vocabularies SavedModel Directory Variables
auxiliary files e.g. vocabularies SavedModel Directory Variables Graph definitions
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving Also supports gRPC
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving
TensorFlow Serving
Inference
• Consistent APIs • Supports simultaneously gRPC: 8500 REST: 8501
• No lists but lists of lists Inference
• No lists but lists of lists Inference
• JSON response • Can specify a particular version Inference
with REST Default URL http://{HOST}:8501/v1/ models/test Model Version http://{HOST}:8501/v1/ models/test/versions/ {MODEL_VERSION}: predict
• JSON response • Can specify a particular version Inference
with REST Default URL http://{HOST}:8501/v1/ models/test Model Version http://{HOST}:8501/v1/ models/test/versions/ {MODEL_VERSION}: predict Port Model name
Inference with REST
• Better connections • Data converted to protocol buffer •
Request types have designated type • Payload converted to base64 • Use gRPC stubs Inference with gRPC
Model Meta Information
• You have an API to get meta info •
Useful for model tracking in telementry systems • Provides model input/ outputs, signatures Model Meta Information
Model Meta Information http://{HOST}:8501/ v1/models/{MODEL_NAME} /versions/{MODEL_VERSION} /metadata
Batch Inferences
• Use hardware efficiently • Save costs and compute resources
• Take multiple requests process them together • Super cool😎 for large models Batch inferences
• max_batch_size • batch_timeout_micros • num_batch_threads • max_enqueued_batches • file_system_poll_wait
_seconds • tensorflow_session _paralellism • tensorflow_intra_op _parallelism Batch Inference Highly customizable
• Load configuration file on startup • Change parameters according
to use cases Batch Inference
Also take a look at...
• Kubeflow deployments • Data pre-processing on server🚅 • AI
Platform Predictions • Deployment on edge devices • Federated learning Also take a look at...
bit.ly/tf-everywhere-ind Demos!
bit.ly/serving-deck Slides
Thank You rishit_dagli Rishit-dagli