Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
n() cool #dplyr things
Search
Romain François
July 10, 2019
Science
2
3k
n() cool #dplyr things
Talk about group_*() functions and summarise_at() at useR! 2019, Toulouse.
Romain François
July 10, 2019
Tweet
Share
More Decks by Romain François
See All by Romain François
dplyr 1.0.0 / Paris R-addicts
romainfrancois
0
250
dplyr 1.0.0
romainfrancois
1
1.2k
dplyr episode 9, summarise() of the vctrs
romainfrancois
0
1k
dplyr episode 9: summarise() of the vctrs
romainfrancois
0
350
dance
romainfrancois
0
280
rap and splice girls
romainfrancois
0
380
rap
romainfrancois
0
120
arrow + ergo
romainfrancois
0
370
ergo
romainfrancois
0
280
Other Decks in Science
See All in Science
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
コミュニティサイエンスの実践@日本認知科学会2025
hayataka88
0
110
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
160
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
150
Kaggle: NeurIPS - Open Polymer Prediction 2025 コンペ 反省会
calpis10000
0
290
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
110
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
910
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
140
機械学習 - SVM
trycycle
PRO
1
950
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
Featured
See All Featured
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
31
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
DevOps and Value Stream Thinking: Enabling flow, efficiency and business value
helenjbeal
1
68
Balancing Empowerment & Direction
lara
5
820
Writing Fast Ruby
sferik
630
62k
Prompt Engineering for Job Search
mfonobong
0
120
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
2
2.8k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Un-Boring Meetings
codingconduct
0
160
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
330
Transcript
n() cool #dplyr things @romain_francois #useR2019, Toulouse
group_hug() https://unsplash.com/photos/Cecb0_8Hx-o Split data in groups Apply something for each
group Combine
f( , ) f( , ) f( , ) group_modify()
fun <- function(slice, keys) { broom::tidy(lm(Petal.Length ~ Sepal.Length, data =
slice)) } iris %>% group_by(Species) %>% group_modify(fun) #> # A tibble: 6 x 6 #> # Groups: Species [3] #> Species term estimate std.error statistic p.value #> <fct> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 setosa (Intercept) 0.803 0.344 2.34 2.38e- 2 #> 2 setosa Sepal.Length 0.132 0.0685 1.92 6.07e- 2 #> 3 versicolor (Intercept) 0.185 0.514 0.360 7.20e- 1 #> 4 versicolor Sepal.Length 0.686 0.0863 7.95 2.59e-10 #> 5 virginica (Intercept) 0.610 0.417 1.46 1.50e- 1 #> 6 virginica Sepal.Length 0.750 0.0630 11.9 6.30e-16 using a function group_modify()
iris %>% group_by(Species) %>% group_modify( ~ broom::tidy(lm(Petal.Length ~ Sepal.Length, data
= .x)) ) #> # A tibble: 6 x 6 #> # Groups: Species [3] #> Species term estimate std.error statistic p.value #> <fct> <chr> <dbl> <dbl> <dbl> <dbl> #> 1 setosa (Intercept) 0.803 0.344 2.34 2.38e- 2 #> 2 setosa Sepal.Length 0.132 0.0685 1.92 6.07e- 2 #> 3 versicolor (Intercept) 0.185 0.514 0.360 7.20e- 1 #> 4 versicolor Sepal.Length 0.686 0.0863 7.95 2.59e-10 #> 5 virginica (Intercept) 0.610 0.417 1.46 1.50e- 1 #> 6 virginica Sepal.Length 0.750 0.0630 11.9 6.30e-16 using a lambda group_modify()
f( , ) f( , ) f( , ) group_map()
list( , , )
iris %>% group_by(Species) %>% group_map(~ lm(Petal.Length ~ Sepal.Length, data =
.x)) #> [[1]] #> #> Call: #> lm(formula = Petal.Length ~ Sepal.Length, data = .x) #> #> Coefficients: #> (Intercept) Sepal.Length #> 0.8031 0.1316 #> #> #> [[2]] #> #> Call: #> lm(formula = Petal.Length ~ Sepal.Length, data = .x) #> #> Coefficients: #> (Intercept) Sepal.Length #> 0.1851 0.6865 #> #> #> [[3]] #> #> Call: #> lm(formula = Petal.Length ~ Sepal.Length, data = .x) #> #> Coefficients: #> (Intercept) Sepal.Length #> 0.6105 0.7501 group_map()
iris %>% group_by(Species) %>% group_map(~ { broom::tidy(lm(Petal.Length ~ Sepal.Length, data
= .x)) %>% tibble::add_column(Species = .y$Species) }) %>% bind_rows() %>% group_by(Species) #> # A tibble: 6 x 6 #> # Groups: Species [3] #> term estimate std.error statistic p.value Species #> <chr> <dbl> <dbl> <dbl> <dbl> <fct> #> 1 (Intercept) 0.803 0.344 2.34 2.38e- 2 setosa #> 2 Sepal.Length 0.132 0.0685 1.92 6.07e- 2 setosa #> 3 (Intercept) 0.185 0.514 0.360 7.20e- 1 versicolor #> 4 Sepal.Length 0.686 0.0863 7.95 2.59e-10 versicolor #> 5 (Intercept) 0.610 0.417 1.46 1.50e- 1 virginica #> 6 Sepal.Length 0.750 0.0630 11.9 6.30e-16 virginica group_modify() diy ! with group_map()
iris %>% group_by(Species) %>% group_map(~ { broom::tidy(lm(Petal.Length ~ Sepal.Length, data
= .x)) %>% tibble::add_column(!!!.y) }) %>% bind_rows() %>% group_by(Species) #> # A tibble: 6 x 6 #> # Groups: Species [3] #> term estimate std.error statistic p.value Species #> <chr> <dbl> <dbl> <dbl> <dbl> <fct> #> 1 (Intercept) 0.803 0.344 2.34 2.38e- 2 setosa #> 2 Sepal.Length 0.132 0.0685 1.92 6.07e- 2 setosa #> 3 (Intercept) 0.185 0.514 0.360 7.20e- 1 versicolor #> 4 Sepal.Length 0.686 0.0863 7.95 2.59e-10 versicolor #> 5 (Intercept) 0.610 0.417 1.46 1.50e- 1 virginica #> 6 Sepal.Length 0.750 0.0630 11.9 6.30e-16 virginica group_map()
group_split() list( , , )
group_split() iris %>% group_by(Species) %>% group_split() #> [[1]] #> #
A tibble: 50 x 5 #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species #> <dbl> <dbl> <dbl> <dbl> <fct> #> 1 5.1 3.5 1.4 0.2 setosa #> 2 4.9 3 1.4 0.2 setosa #> ... #> #> [[2]] #> # A tibble: 50 x 5 #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species #> <dbl> <dbl> <dbl> <dbl> <fct> #> 1 7 3.2 4.7 1.4 versicolor #> 2 6.4 3.2 4.5 1.5 versicolor #> ... #> [[3]] #> # A tibble: 50 x 5 #> Sepal.Length Sepal.Width Petal.Length Petal.Width Species #> <dbl> <dbl> <dbl> <dbl> <fct> #> 1 6.3 3.3 6 2.5 virginica #> 2 5.8 2.7 5.1 1.9 virginica #> ... #> #> attr(,"ptype") #> # A tibble: 0 x 5 #> # … with 5 variables: Sepal.Length <dbl>, Sepal.Width <dbl>, #> # Petal.Length <dbl>, Petal.Width <dbl>, Species <fct>
group_data()
group_data() iris %>% group_by(Species) %>% group_data() #> # A tibble:
3 x 2 #> Species .rows #> <fct> <list> #> 1 setosa <int [50]> #> 2 versicolor <int [50]> #> 3 virginica <int [50]>
group_keys()
group_rows() list( , , )
group_keys() iris %>% group_by(Species) %>% group_keys() #> # A tibble:
3 x 1 #> Species #> <fct> #> 1 setosa #> 2 versicolor #> 3 virginica
group_rows() iris %>% group_by(Species) %>% group_rows() #> [[1]] #> [1]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 #> [24] 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 #> [47] 47 48 49 50 #> #> [[2]] #> [1] 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 #> [18] 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 #> [35] 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 #> #> [[3]] #> [1] 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 #> [18] 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 #> [35] 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
colum n w ise https://unsplash.com/photos/DELDTYAjPrg Select colum ns, Act on
each
iris %>% group_by(Species) %>% summarise( Petal.Width = mean(Petal.Width), Petal.Length =
mean(Petal.Length), Sepal.Width = mean(Sepal.Width), Sepal.Length = mean(Sepal.Length) ) #> # A tibble: 3 x 5 #> Species Petal.Width Petal.Length Sepal.Width Sepal.Length #> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 setosa 0.246 1.46 3.43 5.01 #> 2 versicolor 1.33 4.26 2.77 5.94 #> 3 virginica 2.03 5.55 2.97 6.59 action Selection
iris %>% group_by(Species) %>% summarise_at( vars(contains("Petal"), contains("Sepal")), mean ) #>
# A tibble: 3 x 5 #> Species Petal.Length Petal.Width Sepal.Length Sepal.Width #> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 setosa 1.46 0.246 5.01 3.43 #> 2 versicolor 4.26 1.33 5.94 2.77 #> 3 virginica 5.55 2.03 6.59 2.97 action Selection summarise_at()
trim_mean <- function(.x) mean(.x, trim = .2) iris %>% group_by(Species)
%>% summarise_at( vars(contains(".")), trim_mean ) #> # A tibble: 3 x 5 #> Species Sepal.Length Sepal.Width Petal.Length Petal.Width #> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 setosa 5 3.41 1.46 0.22 #> 2 versicolor 5.91 2.80 4.31 1.34 #> 3 virginica 6.55 2.96 5.49 2.02 action Custom function
lamba das iris %>% group_by(Species) %>% summarise_at( vars(contains(".")), ~ mean(.x,
trim = .2) ) #> # A tibble: 3 x 5 #> Species Sepal.Length Sepal.Width Petal.Length Petal.Width #> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 setosa 5 3.41 1.46 0.22 #> 2 versicolor 5.91 2.80 4.31 1.34 #> 3 virginica 6.55 2.96 5.49 2.02 Lambda action
function(s) iris %>% group_by(Species) %>% summarise_at( vars(starts_with("Sepal")), list(mean = mean,
median = median) ) #> Species Sepal.Length_mean Sepal.Width_mean Sepal.Length_median Sepal.Width_median #> 1 setosa 5.006 3.428 5.0 3.4 #> 2 versicolor 5.936 2.770 5.9 2.8 #> 3 virginica 6.588 2.974 6.5 3.0 Multiple actions
function(s) + lambda(s) iris %>% group_by(Species) %>% summarise_at( vars(starts_with("Sepal")), list(
mean = ~ mean(.x, trim = .2), median = median ) ) #> Species Sepal.Length_mean Sepal.Width_mean Sepal.Length_median Sepal.Width_median #> 1 setosa 5.000000 3.410000 5.0 3.4 #> 2 versicolor 5.910000 2.796667 5.9 2.8 #> 3 virginica 6.546667 2.963333 6.5 3.0
Actions for Petal Petal_exprs <- tidyselect::vars_select(names(iris), starts_with("Petal")) %>% purrr::map(~ expr(mean(!!sym(.))))
Petal_exprs #> $Petal.Length #> mean(Petal.Length) #> #> $Petal.Width #> mean(Petal.Width) Sepal_exprs <- tidyselect::vars_select(names(iris), starts_with("Sepal")) %>% purrr::map(~ expr(median(!!sym(.)))) Sepal_exprs #> $Sepal.Length #> median(Sepal.Length) #> #> $Sepal.Width #> median(Sepal.Width) iris %>% group_by(Species) %>% summarise( !!!Petal_exprs, !!!Sepal_exprs ) #> # A tibble: 3 x 5 #> Species Petal.Length Petal.Width Sepal.Length Sepal.Width #> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 setosa 1.46 0.246 5 3.4 #> 2 versicolor 4.26 1.33 5.9 2.8 #> 3 virginica 5.55 2.03 6.5 3 Actions for Sepal
library(dance) iris %>% group_by(Species) %>% tango( swing(mean, starts_with("Petal")), swing(median, starts_with("Sepal"))
) #> # A tibble: 3 x 5 #> Species Petal.Length Petal.Width Sepal.Length Sepal.Width #> <fct> <dbl> <dbl> <dbl> <dbl> #> 1 setosa 1.46 0.246 5 3.4 #> 2 versicolor 4.26 1.33 5.9 2.8 #> 3 virginica 5.55 2.03 6.5 3
n() cool # dplyr things Rom ain François @romain_francois useR!
2019 - Toulouse - 2019/07/10