Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science 101
Search
Ronojoy Adhikari
September 29, 2015
Research
4
1.6k
Data Science 101
Presentation at the Data Science 101 workshop at Orangescape.
Ronojoy Adhikari
September 29, 2015
Tweet
Share
More Decks by Ronojoy Adhikari
See All by Ronojoy Adhikari
Hydrodynamic and phoretic interactions of active particles in Python
ronojoy
0
170
IMSc Review Presentation
ronojoy
0
340
Probabilistic programming in Python
ronojoy
0
370
Mathematical Modelling
ronojoy
0
230
Data Science : Theory
ronojoy
2
1.4k
Data Science : Probability Theory
ronojoy
1
430
Active Brownian Motion
ronojoy
0
330
Does a droplet roll or slide ?
ronojoy
0
160
Bayesianism : a lightning introduction
ronojoy
2
130
Other Decks in Research
See All in Research
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
120
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
3k
R&Dチームを起ち上げる
shibuiwilliam
1
140
製造業主導型経済からサービス経済化における中間層形成メカニズムのパラダイムシフト
yamotty
0
480
Can AI Generated Ambrotype Chain the Aura of Alternative Process? In SIGGRAPH Asia 2024 Art Papers
toremolo72
0
130
それ、チームの改善になってますか?ー「チームとは?」から始めた組織の実験ー
hirakawa51
0
620
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
130
音声感情認識技術の進展と展望
nagase
0
460
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
120
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
630
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
470
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
650
Marketing to machines
jonoalderson
1
4.6k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Test your architecture with Archunit
thirion
1
2.1k
Code Reviewing Like a Champion
maltzj
527
40k
Producing Creativity
orderedlist
PRO
348
40k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2k
Principles of Awesome APIs and How to Build Them.
keavy
128
17k
30 Presentation Tips
portentint
PRO
1
210
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
82
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
Data Science 101: insight, not numbers Ronojoy Adhikari The Institute
of Mathematical Sciences Chennai, India Orangescape Chennai, India Wednesday, 30 September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Richard Hamming
Wednesday, 30 September 15
What is the purpose of data science ? Wednesday, 30
September 15
What is the purpose of data science ? Insight, not
numbers! Wednesday, 30 September 15
Data science Wednesday, 30 September 15
Wednesday, 30 September 15
Data Wednesday, 30 September 15
Data Domain knowledge Wednesday, 30 September 15
Data Domain knowledge Data curation Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model Wednesday, 30 September
15
Data Domain knowledge Data curation Mathematical model A/B testing Wednesday,
30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Value from data Wednesday, 30 September 15
1. Problem or question ? Wednesday, 30 September 15
Wednesday, 30 September 15
Let the data speak for themselves! Ronald Fisher Wednesday, 30
September 15
Let the data speak for themselves! Ronald Fisher The data
cannot speak for themselves; and they never have, in any real problem of inference. Edwin Jaynes Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
3. Frame a hypothesis (mathematical models) Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Thank you for your attention! Wednesday, 30 September 15