Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science 101
Search
Ronojoy Adhikari
September 29, 2015
Research
4
1.4k
Data Science 101
Presentation at the Data Science 101 workshop at Orangescape.
Ronojoy Adhikari
September 29, 2015
Tweet
Share
More Decks by Ronojoy Adhikari
See All by Ronojoy Adhikari
Hydrodynamic and phoretic interactions of active particles in Python
ronojoy
0
130
IMSc Review Presentation
ronojoy
0
300
Probabilistic programming in Python
ronojoy
0
310
Mathematical Modelling
ronojoy
0
210
Data Science : Theory
ronojoy
2
1.2k
Data Science : Probability Theory
ronojoy
1
350
Active Brownian Motion
ronojoy
0
260
Does a droplet roll or slide ?
ronojoy
0
120
Bayesianism : a lightning introduction
ronojoy
2
100
Other Decks in Research
See All in Research
PhD Defence: Considering Temporal and Contextual Information for Lexical Semantic Change Detection
a1da4
0
120
Human-Informed Machine Learning Models and Interactions
hiromu1996
2
570
20241226_くまもと公共交通新時代シンポジウム
trafficbrain
0
400
o1 pro mode の調査レポート
smorce
0
110
Weekly AI Agents News! 12月号 プロダクト/ニュースのアーカイブ
masatoto
0
320
地理空間情報と自然言語処理:「地球の歩き方旅行記データセット」の高付加価値化を通じて
hiroki13
1
190
Weekly AI Agents News! 11月号 論文のアーカイブ
masatoto
0
290
言語モデルLUKEを経済の知識に特化させたモデル「UBKE-LUKE」について
petter0201
0
190
ベイズ的方法に基づく統計的因果推論の基礎
holyshun
0
800
Poster: Feasibility of Runtime-Neutral Wasm Instrumentation for Edge-Cloud Workload Handover
chikuwait
0
340
JSAI NeurIPS 2024 参加報告会(AI アライメント)
akifumi_wachi
5
810
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
210
Featured
See All Featured
Java REST API Framework Comparison - PWX 2021
mraible
28
8.4k
Six Lessons from altMBA
skipperchong
27
3.6k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
550
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
4 Signs Your Business is Dying
shpigford
182
22k
Rebuilding a faster, lazier Slack
samanthasiow
80
8.8k
Designing for Performance
lara
604
68k
A better future with KSS
kneath
238
17k
Adopting Sorbet at Scale
ufuk
74
9.2k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Practical Orchestrator
shlominoach
186
10k
Transcript
Data Science 101: insight, not numbers Ronojoy Adhikari The Institute
of Mathematical Sciences Chennai, India Orangescape Chennai, India Wednesday, 30 September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Richard Hamming
Wednesday, 30 September 15
What is the purpose of data science ? Wednesday, 30
September 15
What is the purpose of data science ? Insight, not
numbers! Wednesday, 30 September 15
Data science Wednesday, 30 September 15
Wednesday, 30 September 15
Data Wednesday, 30 September 15
Data Domain knowledge Wednesday, 30 September 15
Data Domain knowledge Data curation Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model Wednesday, 30 September
15
Data Domain knowledge Data curation Mathematical model A/B testing Wednesday,
30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Value from data Wednesday, 30 September 15
1. Problem or question ? Wednesday, 30 September 15
Wednesday, 30 September 15
Let the data speak for themselves! Ronald Fisher Wednesday, 30
September 15
Let the data speak for themselves! Ronald Fisher The data
cannot speak for themselves; and they never have, in any real problem of inference. Edwin Jaynes Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
3. Frame a hypothesis (mathematical models) Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Thank you for your attention! Wednesday, 30 September 15