Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data Science 101
Search
Ronojoy Adhikari
September 29, 2015
Research
4
1.4k
Data Science 101
Presentation at the Data Science 101 workshop at Orangescape.
Ronojoy Adhikari
September 29, 2015
Tweet
Share
More Decks by Ronojoy Adhikari
See All by Ronojoy Adhikari
Hydrodynamic and phoretic interactions of active particles in Python
ronojoy
0
120
IMSc Review Presentation
ronojoy
0
290
Probabilistic programming in Python
ronojoy
0
290
Mathematical Modelling
ronojoy
0
200
Data Science : Theory
ronojoy
2
1.2k
Data Science : Probability Theory
ronojoy
1
340
Active Brownian Motion
ronojoy
0
240
Does a droplet roll or slide ?
ronojoy
0
110
Bayesianism : a lightning introduction
ronojoy
2
98
Other Decks in Research
See All in Research
ダイナミックプライシング とその実例
skmr2348
3
480
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
250
ECCV2024読み会: Minimalist Vision with Freeform Pixels
hsmtta
1
300
熊本から日本の都市交通政策を立て直す~「車1割削減、渋滞半減、公共交通2倍」の実現へ~@公共交通マーケティング研究会リスタートセミナー
trafficbrain
0
180
最近のVisual Odometryと Depth Estimation
sgk
1
310
リモートワークにおけるパッシブ疲労
matsumoto_r
PRO
4
1.8k
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
680
尺度開発における質的研究アプローチ(自主企画シンポジウム7:認知行動療法における尺度開発のこれから)
litalicolab
0
360
EBPMにおける生成AI活用について
daimoriwaki
0
220
研究の進め方 ランダムネスとの付き合い方について
joisino
PRO
56
20k
日本語医療LLM評価ベンチマークの構築と性能分析
fta98
3
780
snlp2024_multiheadMoE
takase
0
460
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
48
2.2k
GitHub's CSS Performance
jonrohan
1030
460k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
Unsuck your backbone
ammeep
669
57k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.3k
A Philosophy of Restraint
colly
203
16k
Reflections from 52 weeks, 52 projects
jeffersonlam
347
20k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Raft: Consensus for Rubyists
vanstee
137
6.7k
Transcript
Data Science 101: insight, not numbers Ronojoy Adhikari The Institute
of Mathematical Sciences Chennai, India Orangescape Chennai, India Wednesday, 30 September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Wednesday, 30
September 15
The purpose of computing is insight, not numbers. Richard Hamming
Wednesday, 30 September 15
What is the purpose of data science ? Wednesday, 30
September 15
What is the purpose of data science ? Insight, not
numbers! Wednesday, 30 September 15
Data science Wednesday, 30 September 15
Wednesday, 30 September 15
Data Wednesday, 30 September 15
Data Domain knowledge Wednesday, 30 September 15
Data Domain knowledge Data curation Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model Wednesday, 30 September
15
Data Domain knowledge Data curation Mathematical model A/B testing Wednesday,
30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Wednesday, 30 September 15
Data Domain knowledge Data curation Mathematical model A/B testing Machine
learning Machine inference Value from data Wednesday, 30 September 15
1. Problem or question ? Wednesday, 30 September 15
Wednesday, 30 September 15
Let the data speak for themselves! Ronald Fisher Wednesday, 30
September 15
Let the data speak for themselves! Ronald Fisher The data
cannot speak for themselves; and they never have, in any real problem of inference. Edwin Jaynes Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes Wednesday,
30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
Classification Regression Clustering Dimensionality reduction predict class, given attributes predict
values, given other values group similar things together keeping only the relevant variables Wednesday, 30 September 15
3. Frame a hypothesis (mathematical models) Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Bayesian Blackbox Frequentist Causal probability is a state of knowledge
ML : toolbox for processing data ML : learning generative models of data probability is a frequency Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Wednesday, 30 September 15
We are building a causal learning and inference engine that
will beat the current state-of-art! Thank you for your attention! Wednesday, 30 September 15