IMSc Review Presentation

IMSc Review Presentation

Intended for presentation to the committee conducting an assessment of the Institute of Mathematical Sciences, as mandated by the Department of Atomic Energy. Rejected for inclusion by the "LEP group" on the logic that "the work done by the group is reflected more prominently than focusing on individuals (sic)" !

0f80748bac600948e3d3a233a85ac16c?s=128

Ronojoy Adhikari

August 19, 2016
Tweet

Transcript

  1. Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter

    Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5
  2. PRE ’11 Phil.Trans.Roy.Soc ’11 J.Stat.Mech ’11 PRL ’11 PRL ’10,

    PRL ’12 Nature Sci. Rep. ’13 PRL ’14, Soft Matter ’15, Current Science ’10 PNAS ’12 PRE ’10 Science ’09, PNAS ’09 PRE ’11, Langmuir ’13 Soft Matter ’16 PRE ’09, JCP ’09 JCP ’10 PRX (under review) EPL ’13 J.Comp.Phys ’13 Journals PRE ’10 JASA ’10, SMAC ’14 J.Stat.Mech ’11 High impact journals PRL ’16 Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5
  3. PRE ’11 Phil.Trans.Roy.Soc ’11 J.Stat.Mech ’11 PRL ’11 PRL ’10,

    PRL ’12 Nature Sci. Rep. ’13 PRL ’14, Soft Matter ’15, Current Science ’10 PNAS ’12 PRE ’10 Science ’09, PNAS ’09 PRE ’11, Langmuir ’13 Soft Matter ’16 PRE ’09, JCP ’09 JCP ’10 PRX (under review) EPL ’13 J.Comp.Phys ’13 Journals PRE ’10 JASA ’10, SMAC ’14 J.Stat.Mech ’11 High impact journals PRL ’16 Indo-US Fellowship Princeton / NYU ’13 DAE-SRC Award ’15 US patent pending ’16 SankhyaSutra Labs (startup @ JNCASR ’15) Hamied Visiting Lecturer Cambridge University ’12 Awards, fellowships, others Google Faculty Research Award ’10 Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5
  4. PRE ’11 Phil.Trans.Roy.Soc ’11 J.Stat.Mech ’11 PRL ’11 PRL ’10,

    PRL ’12 Nature Sci. Rep. ’13 PRL ’14, Soft Matter ’15, Current Science ’10 PNAS ’12 PRE ’10 Science ’09, PNAS ’09 PRE ’11, Langmuir ’13 Soft Matter ’16 PRE ’09, JCP ’09 JCP ’10 PRX (under review) EPL ’13 J.Comp.Phys ’13 Journals PRE ’10 JASA ’10, SMAC ’14 J.Stat.Mech ’11 High impact journals PRL ’16 Doctoral Students A. Bhattacharjee (’10) - Inspire faculty @IISc S. Thampi (’12) - Asst. Prof @IIT-M S. Ghose (’14) - Science journalist A. Pandey (’16) - Post-doc (Tokyo) A. Laskar (’16) - submitted R. Singh - current R. Manna - current Indo-US Fellowship Princeton / NYU ’13 DAE-SRC Award ’15 US patent pending ’16 SankhyaSutra Labs (startup @ JNCASR ’15) Hamied Visiting Lecturer Cambridge University ’12 Awards, fellowships, others Google Faculty Research Award ’10 Ronojoy Adhikari Research 2009 - 2016 Research Areas Soft Matter Active Matter Binary Fluids Complex Colloids Nematic Liquid Crystals Membranes Statistical Physics Discrete Kinetic Theory Protein Dynamics Numerics / Computation Lattice Boltzmann Methods Isotropic Finite Di↵erence Stochastic Integrators Discrete Di↵erential Forms Stochastic Processes Enzyme Kinetics Epidemics Machine Learning Markov Models Point Processes Fast Inference 1 2 3 4 5
  5. Two-dimensional crystallization of active colloids with Rajesh Singh

  6. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments

    have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013
  7. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments

    have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013
  8. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments

    have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013
  9. Our theory - identified the mechanism underlying this crystallization phenomenon:

    active hydrodynamic flow near a wall induces effective attractive interactions between active colloids. Thereby, constructed over-damped equations of motion for particle configurations. Complete description at micron scales. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013
  10. Our theory - identified the mechanism underlying this crystallization phenomenon:

    active hydrodynamic flow near a wall induces effective attractive interactions between active colloids. Thereby, constructed over-damped equations of motion for particle configurations. Complete description at micron scales. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013
  11. Our theory - identified the mechanism underlying this crystallization phenomenon:

    active hydrodynamic flow near a wall induces effective attractive interactions between active colloids. Thereby, constructed over-damped equations of motion for particle configurations. Complete description at micron scales. Two-dimensional crystallization of active colloids with Rajesh Singh Recent experiments have observed an intriguing symmetry-breaking transition in active colloids. Bacteria: Libchaber et al PRL 2015 Autophoretic colloids : Palacci et al Science 2013 Phonon modes are non-propagating, dispersion relation is activity- dependent. Active stiffening suppresses phase fluctuations and algebraic decay of order. Possibility of “active” topological defect-mediated melting. This is a new mechanism of spontaneous symmetry breaking, with no analogue in equilibrium. Entropy production, rather than entropy, is the source of effective interactions. Continuum description of these phenomena, by a non-equilibrium extension of the density wave theory of two-dimensional freezing (Ramakrishnan 1982), is ongoing work.