Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Active Brownian Motion

Active Brownian Motion

Lecture at the Statistical Physics meeting at the Indian Institute of Science

Ronojoy Adhikari

February 08, 2015
Tweet

More Decks by Ronojoy Adhikari

Other Decks in Research

Transcript

  1. Active Brownian Motion Ronojoy Adhikari The Institute Of Mathematical Sciences

    ⌘ ⌘0 = (1 + 5 2 + 5.2 2) D = µkBT Better than anyone before or after him, he knew how to ... make use of statistical fluctuations.
  2. Fluctuation, dissipation and momentum conservation ⌦n = µRT nm ·

    Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m mobility matrices many-body dissipation Wiener processes many-body fluctuation
  3. Fluctuation, dissipation and momentum conservation ⌦n = µRT nm ·

    Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m mobility matrices many-body dissipation Wiener processes many-body fluctuation - mobility matrices encode momentum conservation - mobility matrices are symmetric (Onsager) - mobility matrices are positive definite (dissipation) - “square roots” are Cholesky factors - Gibbs distribution is stationary for gradient flows (FDT)
  4. Fluctuation, dissipation and momentum conservation ⌦n = µRT nm ·

    Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m mobility matrices many-body dissipation Wiener processes many-body fluctuation - mobility matrices encode momentum conservation - mobility matrices are symmetric (Onsager) - mobility matrices are positive definite (dissipation) - “square roots” are Cholesky factors - Gibbs distribution is stationary for gradient flows (FDT) How do we extend this paradigm to suspensions of active particles ?
  5. M ˙ V = I · n dS + Fe

    I ˙ ⌦ = I r ⇥ · n dS + Te
  6. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te
  7. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n
  8. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n = pI + ⌘(rv + rvT )
  9. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT )
  10. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT )
  11. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0
  12. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions
  13. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn
  14. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions can produce fluid flow without rigid body motion! v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn
  15. neglect inertia, set external forces and torques to zero :

    M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions can produce fluid flow without rigid body motion! what systems can these describe ? v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn
  16. larger faster ⇠ µm ⇠ 100µm ⇠ cm ⇠ m

    E. Coli Paramecium Produce flow in the absence of body forces and torques
  17. Propulsion matrices Singh, Ghose, RA, arxiv:1411.0278 Vn = µT T

    nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m + ⇡T l nm · Vl+1 m ⌦n = µRT nm · Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m + ⇡Rl nm · Vl+1 m mobility matrices many-body dissipation Wiener processes many-body fluctuation propulsion matrices many-body activity - propulsion matrices encode momentum conservation - propulsion matrices produce ballistic motion - propulsion matrices are positive definite (dissipation) - Gibbs distribution is not stationary for gradient flows - energy from boundary condition is dissipated in fluid v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn Extension of Einstein’s theory of Brownian motion to active suspensions
  18. Irreducible expansions of active flow rotation 0 = I ·

    n dS 0 = I r ⇥ · n translation + ...
  19. Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin

    motors J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)
  20. Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin

    motors J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)
  21. Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin

    motors J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)
  22. Chlamydomonas Reinhardtii Microswimming of C. Reinhardtii Flagella driven by dyenin

    motors Complex, time-dependent flow field created by activity J. S. Guasto, K. A. Johnson, J. P. Gollub, Physical Review Letters 105 (2010)
  23. Experiment Theory J. S. Guasto, K. A. Johnson, J. P.

    Gollub PRL 105 (2010) S. Ghose, RA PRL 112 (2014)
  24. Moran and Posner, JFM 680 (2011) Pandey, Kumar, RA, arxiv:1408.0433

    Non-equilibrium steady states in suspensions of active rods
  25. Apolar, active rods contractile flow || long axis extensile flow

    || long axis “contractile active rod” “extensile active rod” Recently synthesized by Roy group (IISER-K) Pandey, Kumar, RA, arxiv:1408.0433
  26. Contractile suspension : micro-structured steady states clusters form at high

    concentration activity destabilizes smectic order
  27. Contractile suspension : micro-structured steady states clusters form at high

    concentration activity destabilizes smectic order
  28. Low entropy states maintained by energy dissipation Palacci et al,

    Science 339 (2013) extensile flow contractile flow
  29. 'I called on him [Brown] two or three times before

    the voyage of the Beagle (1831), and on one occasion he asked me to look through a microscope and describe what I saw. This I did, and believe now that it was the marvelous currents of protoplasm in some vegetable cell. I then asked him what I had seen; but he answered me, "That is my little secret".'