Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m Vn = µT T nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m mobility matrices many-body dissipation Wiener processes many-body fluctuation - mobility matrices encode momentum conservation - mobility matrices are symmetric (Onsager) - mobility matrices are positive definite (dissipation) - “square roots” are Cholesky factors - Gibbs distribution is stationary for gradient flows (FDT) How do we extend this paradigm to suspensions of active particles ?
M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT )
M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT )
M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0
M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions
M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn
M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions can produce fluid flow without rigid body motion! v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn
M ˙ V = I · n dS + Fe I ˙ ⌦ = I r ⇥ · n dS + Te 0 = I · n dS 0 = I r ⇥ · n active particle : non-trivial flow in the absence of forces and torques = pI + ⌘(rv + rvT ) r · = rp + ⌘r2v = 0 r · v = 0 boundary conditions can produce fluid flow without rigid body motion! what systems can these describe ? v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn
nm · Fm + µT R nm · Tm + q 2kBTµT T nm · ⇠T m + q 2kBTµT R nm · ⇠R m + ⇡T l nm · Vl+1 m ⌦n = µRT nm · Fm + µRR nm · Tm + q 2kBTµRT nm · ⇣T m + q 2kBTµRR nm · ⇣R m + ⇡Rl nm · Vl+1 m mobility matrices many-body dissipation Wiener processes many-body fluctuation propulsion matrices many-body activity - propulsion matrices encode momentum conservation - propulsion matrices produce ballistic motion - propulsion matrices are positive definite (dissipation) - Gibbs distribution is not stationary for gradient flows - energy from boundary condition is dissipated in fluid v = Vn + ⌦n ⇥ (r Rn) + va n , r 2 Sn Extension of Einstein’s theory of Brownian motion to active suspensions
the voyage of the Beagle (1831), and on one occasion he asked me to look through a microscope and describe what I saw. This I did, and believe now that it was the marvelous currents of protoplasm in some vegetable cell. I then asked him what I had seen; but he answered me, "That is my little secret".'