Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data wrangling & manipulation in R - Day 3 slides
Search
Ruan van Mazijk
July 03, 2019
Programming
0
27
Data wrangling & manipulation in R - Day 3 slides
Ruan van Mazijk
July 03, 2019
Tweet
Share
More Decks by Ruan van Mazijk
See All by Ruan van Mazijk
Data wrangling & manipulation in R - Day 2 slides
rvanmazijk
0
52
Data wrangling & manipulation in R - Day 1 slides
rvanmazijk
0
23
Biodiversity, evolution & taxonomy - Teaching Biodiversity Short Course for FET Life Sciences Teachers
rvanmazijk
0
100
An introduction to R Markdown
rvanmazijk
0
120
Does genome size affect plant water-use? - Ecophysiology & phenology in Cape Schoenoid sedges
rvanmazijk
1
40
Environmental turnover predicts plant species richness & turnover - Comparing the Greater Cape Floristic Region & the Southwest Australia Floristic Region
rvanmazijk
0
18
Other Decks in Programming
See All in Programming
PHPに関数型の魂を宿す〜PHP 8.5 で実現する堅牢なコードとは〜 #phpcon_hiroshima / phpcon-hiroshima-2025
shogogg
1
290
株式会社 Sun terras カンパニーデック
sunterras
0
380
Web フロントエンドエンジニアに開かれる AI Agent プロダクト開発 - Vercel AI SDK を観察して AI Agent と仲良くなろう! #FEC余熱NIGHT
izumin5210
3
580
Devoxx BE 2025 Loom lab
josepaumard
0
110
CSC305 Lecture 06
javiergs
PRO
0
250
iOSエンジニア向けの英語学習アプリを作る!
yukawashouhei
0
200
バッチ処理を「状態の記録」から「事実の記録」へ
panda728
PRO
0
170
Claude Agent SDK を使ってみよう
hyshu
0
1.3k
XP, Testing and ninja testing ZOZ5
m_seki
3
750
AIと人間の共創開発!OSSで試行錯誤した開発スタイル
mae616
2
740
What's new in Spring Modulith?
olivergierke
1
160
AI Agent 時代的開發者生存指南
eddie
3
2k
Featured
See All Featured
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3k
The World Runs on Bad Software
bkeepers
PRO
72
11k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Illustrated Children's Guide to Kubernetes
chrisshort
49
51k
Designing for humans not robots
tammielis
254
26k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
920
We Have a Design System, Now What?
morganepeng
53
7.8k
Thoughts on Productivity
jonyablonski
70
4.9k
Building an army of robots
kneath
306
46k
Statistics for Hackers
jakevdp
799
220k
Transcript
data_wrangling() && ("manipulation" %in% R) %>% %>% %>% > day[3]
Ruan van Mazijk
tinyurl.com/r-with-ruan Notes & slides will go up here: (But I
encourage you to make your own notes!)
> workshop$outline[1:3] DAY 1 Tidy data principles & tidyr DAY
2 Manipulating data & an intro to dplyr DAY 3 Extending your data with mutate(), summarise() & friends
> workshop$outline[2:3] DAY 2 Manipulating data & an intro to
dplyr DAY 3 Extending your data with mutate(), summarise() & friends
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
data %>%
data %>% gather(key = veg_type, value = fix) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10),
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld"))
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) Summary statistics for each vegetation type?
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) %>% ???() Summary statistics for each vegetation type?
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
dplyr:: # Verbs to extend your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
data %>% mutate(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate(...)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(BMI = height / weight, BMI_std = scale(BMI))
data %>% mutate_all(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_all(.funs, ...) data %>% mutate_all(scale) data %>% mutate_all(list(log,
log1p))
data %>% mutate_if(.predicate, .funs) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_if(.predicate, .funs, ...) data %>% mutate_if(is.numeric, scale) data
%>% mutate_if(is.numeric, list(log, log1p))
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type)
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type) %>% summarise(mean_plant_height
= mean(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height),
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE) data %>% group_by(veg_type) %>% summarise_if(is.numeric, list(mean, sd))
> demo()