Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data wrangling & manipulation in R - Day 3 slides
Search
Ruan van Mazijk
July 03, 2019
Programming
0
27
Data wrangling & manipulation in R - Day 3 slides
Ruan van Mazijk
July 03, 2019
Tweet
Share
More Decks by Ruan van Mazijk
See All by Ruan van Mazijk
Data wrangling & manipulation in R - Day 2 slides
rvanmazijk
0
52
Data wrangling & manipulation in R - Day 1 slides
rvanmazijk
0
23
Biodiversity, evolution & taxonomy - Teaching Biodiversity Short Course for FET Life Sciences Teachers
rvanmazijk
0
100
An introduction to R Markdown
rvanmazijk
0
120
Does genome size affect plant water-use? - Ecophysiology & phenology in Cape Schoenoid sedges
rvanmazijk
1
40
Environmental turnover predicts plant species richness & turnover - Comparing the Greater Cape Floristic Region & the Southwest Australia Floristic Region
rvanmazijk
0
18
Other Decks in Programming
See All in Programming
AIと私たちの学習の変化を考える - Claude Codeの学習モードを例に
azukiazusa1
10
4.3k
Testing Trophyは叫ばない
toms74209200
0
880
Putting The Genie in the Bottle - A Crash Course on running LLMs on Android
iurysza
0
140
AI時代のUIはどこへ行く?
yusukebe
18
8.9k
Tool Catalog Agent for Bedrock AgentCore Gateway
licux
6
2.5k
さようなら Date。 ようこそTemporal! 3年間先行利用して得られた知見の共有
8beeeaaat
3
1.5k
Compose Multiplatform × AI で作る、次世代アプリ開発支援ツールの設計と実装
thagikura
0
160
go test -json そして testing.T.Attr / Kyoto.go #63
utgwkk
3
310
Processing Gem ベースの、2D レトロゲームエンジンの開発
tokujiros
2
130
Amazon RDS 向けに提供されている MCP Server と仕組みを調べてみた/jawsug-okayama-2025-aurora-mcp
takahashiikki
1
110
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
22
5.8k
旅行プランAIエージェント開発の裏側
ippo012
2
910
Featured
See All Featured
Balancing Empowerment & Direction
lara
3
620
Building Applications with DynamoDB
mza
96
6.6k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Producing Creativity
orderedlist
PRO
347
40k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
46
7.6k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Agile that works and the tools we love
rasmusluckow
330
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
Practical Orchestrator
shlominoach
190
11k
Transcript
data_wrangling() && ("manipulation" %in% R) %>% %>% %>% > day[3]
Ruan van Mazijk
tinyurl.com/r-with-ruan Notes & slides will go up here: (But I
encourage you to make your own notes!)
> workshop$outline[1:3] DAY 1 Tidy data principles & tidyr DAY
2 Manipulating data & an intro to dplyr DAY 3 Extending your data with mutate(), summarise() & friends
> workshop$outline[2:3] DAY 2 Manipulating data & an intro to
dplyr DAY 3 Extending your data with mutate(), summarise() & friends
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
data %>%
data %>% gather(key = veg_type, value = fix) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10),
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld"))
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) Summary statistics for each vegetation type?
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) %>% ???() Summary statistics for each vegetation type?
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
dplyr:: # Verbs to extend your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
data %>% mutate(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate(...)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(BMI = height / weight, BMI_std = scale(BMI))
data %>% mutate_all(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_all(.funs, ...) data %>% mutate_all(scale) data %>% mutate_all(list(log,
log1p))
data %>% mutate_if(.predicate, .funs) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_if(.predicate, .funs, ...) data %>% mutate_if(is.numeric, scale) data
%>% mutate_if(is.numeric, list(log, log1p))
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type)
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type) %>% summarise(mean_plant_height
= mean(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height),
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE) data %>% group_by(veg_type) %>% summarise_if(is.numeric, list(mean, sd))
> demo()