Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data wrangling & manipulation in R - Day 3 slides
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
Ruan van Mazijk
July 03, 2019
Programming
0
28
Data wrangling & manipulation in R - Day 3 slides
Ruan van Mazijk
July 03, 2019
Tweet
Share
More Decks by Ruan van Mazijk
See All by Ruan van Mazijk
Data wrangling & manipulation in R - Day 2 slides
rvanmazijk
0
57
Data wrangling & manipulation in R - Day 1 slides
rvanmazijk
0
26
Biodiversity, evolution & taxonomy - Teaching Biodiversity Short Course for FET Life Sciences Teachers
rvanmazijk
0
110
An introduction to R Markdown
rvanmazijk
0
130
Does genome size affect plant water-use? - Ecophysiology & phenology in Cape Schoenoid sedges
rvanmazijk
1
42
Environmental turnover predicts plant species richness & turnover - Comparing the Greater Cape Floristic Region & the Southwest Australia Floristic Region
rvanmazijk
0
21
Other Decks in Programming
See All in Programming
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
280
SourceGeneratorのススメ
htkym
0
200
今から始めるClaude Code超入門
448jp
8
9k
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
750
Oxlint JS plugins
kazupon
1
990
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
5
790
高速開発のためのコード整理術
sutetotanuki
1
410
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
4k
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
110
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
21
7.4k
Featured
See All Featured
Leo the Paperboy
mayatellez
4
1.4k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
3
320
Build The Right Thing And Hit Your Dates
maggiecrowley
39
3k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.4k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
410
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
77
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
It's Worth the Effort
3n
188
29k
Pawsitive SEO: Lessons from My Dog (and Many Mistakes) on Thriving as a Consultant in the Age of AI
davidcarrasco
0
67
Why Our Code Smells
bkeepers
PRO
340
58k
Transcript
data_wrangling() && ("manipulation" %in% R) %>% %>% %>% > day[3]
Ruan van Mazijk
tinyurl.com/r-with-ruan Notes & slides will go up here: (But I
encourage you to make your own notes!)
> workshop$outline[1:3] DAY 1 Tidy data principles & tidyr DAY
2 Manipulating data & an intro to dplyr DAY 3 Extending your data with mutate(), summarise() & friends
> workshop$outline[2:3] DAY 2 Manipulating data & an intro to
dplyr DAY 3 Extending your data with mutate(), summarise() & friends
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
data %>%
data %>% gather(key = veg_type, value = fix) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10),
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld"))
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) Summary statistics for each vegetation type?
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) %>% ???() Summary statistics for each vegetation type?
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
dplyr:: # Verbs to extend your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
data %>% mutate(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate(...)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(BMI = height / weight, BMI_std = scale(BMI))
data %>% mutate_all(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_all(.funs, ...) data %>% mutate_all(scale) data %>% mutate_all(list(log,
log1p))
data %>% mutate_if(.predicate, .funs) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_if(.predicate, .funs, ...) data %>% mutate_if(is.numeric, scale) data
%>% mutate_if(is.numeric, list(log, log1p))
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type)
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type) %>% summarise(mean_plant_height
= mean(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height),
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE) data %>% group_by(veg_type) %>% summarise_if(is.numeric, list(mean, sd))
> demo()