Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data wrangling & manipulation in R - Day 3 slides
Search
Ruan van Mazijk
July 03, 2019
Programming
0
27
Data wrangling & manipulation in R - Day 3 slides
Ruan van Mazijk
July 03, 2019
Tweet
Share
More Decks by Ruan van Mazijk
See All by Ruan van Mazijk
Data wrangling & manipulation in R - Day 2 slides
rvanmazijk
0
52
Data wrangling & manipulation in R - Day 1 slides
rvanmazijk
0
23
Biodiversity, evolution & taxonomy - Teaching Biodiversity Short Course for FET Life Sciences Teachers
rvanmazijk
0
100
An introduction to R Markdown
rvanmazijk
0
120
Does genome size affect plant water-use? - Ecophysiology & phenology in Cape Schoenoid sedges
rvanmazijk
1
40
Environmental turnover predicts plant species richness & turnover - Comparing the Greater Cape Floristic Region & the Southwest Australia Floristic Region
rvanmazijk
0
18
Other Decks in Programming
See All in Programming
Flutterで分数(Fraction)を表示する方法
koukimiura
0
130
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
280
monorepo の Go テストをはやくした〜い!~最小の依存解決への道のり~ / faster-testing-of-monorepos
convto
2
460
オープンソースソフトウェアへの解像度🔬
utam0k
12
2.5k
Pull-Requestの内容を1クリックで動作確認可能にするワークフロー
natmark
2
490
Signals & Resource API in Angular: 3 Effective Rules for Your Architecture @BASTA 2025 in Mainz
manfredsteyer
PRO
0
110
After go func(): Goroutines Through a Beginner’s Eye
97vaibhav
0
350
What's new in Spring Modulith?
olivergierke
1
130
スマホから Youtube Shortsを見られないようにする
lemolatoon
17
19k
あなたとKaigi on Rails / Kaigi on Rails + You
shimoju
0
110
Go Conference 2025: Goで体感するMultipath TCP ― Go 1.24 時代の MPTCP Listener を理解する
takehaya
8
1.6k
CSC509 Lecture 05
javiergs
PRO
0
300
Featured
See All Featured
How to Ace a Technical Interview
jacobian
280
24k
Statistics for Hackers
jakevdp
799
220k
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Balancing Empowerment & Direction
lara
4
680
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.2k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
A Tale of Four Properties
chriscoyier
160
23k
How to Think Like a Performance Engineer
csswizardry
27
2k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Transcript
data_wrangling() && ("manipulation" %in% R) %>% %>% %>% > day[3]
Ruan van Mazijk
tinyurl.com/r-with-ruan Notes & slides will go up here: (But I
encourage you to make your own notes!)
> workshop$outline[1:3] DAY 1 Tidy data principles & tidyr DAY
2 Manipulating data & an intro to dplyr DAY 3 Extending your data with mutate(), summarise() & friends
> workshop$outline[2:3] DAY 2 Manipulating data & an intro to
dplyr DAY 3 Extending your data with mutate(), summarise() & friends
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
data %>%
data %>% gather(key = veg_type, value = fix) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10),
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld"))
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) Summary statistics for each vegetation type?
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) %>% ???() Summary statistics for each vegetation type?
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
dplyr:: # Verbs to extend your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
data %>% mutate(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate(...)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(BMI = height / weight, BMI_std = scale(BMI))
data %>% mutate_all(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_all(.funs, ...) data %>% mutate_all(scale) data %>% mutate_all(list(log,
log1p))
data %>% mutate_if(.predicate, .funs) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_if(.predicate, .funs, ...) data %>% mutate_if(is.numeric, scale) data
%>% mutate_if(is.numeric, list(log, log1p))
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type)
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type) %>% summarise(mean_plant_height
= mean(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height),
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE) data %>% group_by(veg_type) %>% summarise_if(is.numeric, list(mean, sd))
> demo()