Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Data wrangling & manipulation in R - Day 3 slides
Search
Ruan van Mazijk
July 03, 2019
Programming
0
27
Data wrangling & manipulation in R - Day 3 slides
Ruan van Mazijk
July 03, 2019
Tweet
Share
More Decks by Ruan van Mazijk
See All by Ruan van Mazijk
Data wrangling & manipulation in R - Day 2 slides
rvanmazijk
0
52
Data wrangling & manipulation in R - Day 1 slides
rvanmazijk
0
23
Biodiversity, evolution & taxonomy - Teaching Biodiversity Short Course for FET Life Sciences Teachers
rvanmazijk
0
100
An introduction to R Markdown
rvanmazijk
0
120
Does genome size affect plant water-use? - Ecophysiology & phenology in Cape Schoenoid sedges
rvanmazijk
1
40
Environmental turnover predicts plant species richness & turnover - Comparing the Greater Cape Floristic Region & the Southwest Australia Floristic Region
rvanmazijk
0
18
Other Decks in Programming
See All in Programming
複雑なドメインに挑む.pdf
yukisakai1225
5
1.1k
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
480
「手軽で便利」に潜む罠。 Popover API を WCAG 2.2の視点で安全に使うには
taitotnk
0
830
AWS発のAIエディタKiroを使ってみた
iriikeita
1
180
アルテニア コンサル/ITエンジニア向け 採用ピッチ資料
altenir
0
100
さようなら Date。 ようこそTemporal! 3年間先行利用して得られた知見の共有
8beeeaaat
3
1.4k
Putting The Genie in the Bottle - A Crash Course on running LLMs on Android
iurysza
0
140
Performance for Conversion! 分散トレーシングでボトルネックを 特定せよ
inetand
0
120
Laravel Boost 超入門
fire_arlo
2
210
print("Hello, World")
eddie
1
520
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
RDoc meets YARD
okuramasafumi
4
170
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
13k
4 Signs Your Business is Dying
shpigford
184
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Designing Experiences People Love
moore
142
24k
Imperfection Machines: The Place of Print at Facebook
scottboms
268
13k
Gamification - CAS2011
davidbonilla
81
5.4k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
111
20k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Transcript
data_wrangling() && ("manipulation" %in% R) %>% %>% %>% > day[3]
Ruan van Mazijk
tinyurl.com/r-with-ruan Notes & slides will go up here: (But I
encourage you to make your own notes!)
> workshop$outline[1:3] DAY 1 Tidy data principles & tidyr DAY
2 Manipulating data & an intro to dplyr DAY 3 Extending your data with mutate(), summarise() & friends
> workshop$outline[2:3] DAY 2 Manipulating data & an intro to
dplyr DAY 3 Extending your data with mutate(), summarise() & friends
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
data %>%
data %>% gather(key = veg_type, value = fix) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>%
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10),
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld"))
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) Summary statistics for each vegetation type?
data %>% gather(key = veg_type, value = fix) %>% separate(fix,
into = c("lon", "lat")) %>% select(veg_type, lon, lat, soil, plant_height) %>% filter(plant_height %>% between(0.5, 10), veg_type %in% c("fynbos", "strandveld", "renosterveld")) %>% ???() Summary statistics for each vegetation type?
dplyr:: # Verbs to manipulate your data select() # operates
on columns filter() # operates on rows
dplyr:: # Verbs to extend your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
data %>% mutate(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate(...)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(...) data %>% mutate(BMI = height / weight)
data %>% mutate(BMI = height / weight, BMI_std = scale(BMI))
data %>% mutate_all(...) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_all(.funs, ...) data %>% mutate_all(scale) data %>% mutate_all(list(log,
log1p))
data %>% mutate_if(.predicate, .funs) CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/
data %>% mutate_if(.predicate, .funs, ...) data %>% mutate_if(is.numeric, scale) data
%>% mutate_if(is.numeric, list(log, log1p))
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
dplyr:: # Verbs to extent your data mutate() # operates
on columns group_by() # operates on rows summarise() # rows & columns
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type)
CC BY SA RStudio https://www.rstudio.com/resources/cheatsheets/ data %>% group_by(veg_type) %>% summarise(mean_plant_height
= mean(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height),
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE)
data %>% group_by(veg_type) %>% summarise(mean_plant_height = mean(plant_height), st_plant_height = sd(plant_height))
data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean) data %>% group_by(veg_type) %>% summarise_if(is.numeric, mean, na.rm = TRUE) data %>% group_by(veg_type) %>% summarise_if(is.numeric, list(mean, sd))
> demo()