Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RBC202003_Day2_Period5
Search
sakaue
March 20, 2020
Education
0
37
RBC202003_Day2_Period5
sakaue
March 20, 2020
Tweet
Share
More Decks by sakaue
See All by sakaue
SappoRo.R #11「R によるThe Multilingual Eye-tracking COrpus (MECO) の探索的データ分析」
sakaue
0
83
RBC202003_Day2_Period6
sakaue
0
86
RBC202003_Day2_Period7
sakaue
0
82
Rbootcamp202003_Day2_p8.pdf
sakaue
0
78
RBC202003_Day1_Period1
sakaue
1
64
RBC202003_Day1_Period2
sakaue
0
63
RBC202003_Day1_Period3
sakaue
0
84
RBC202003_Day1_Period4
sakaue
0
48
Other Decks in Education
See All in Education
Pydantic(AI)とJSONの詳細解説
mickey_kubo
0
120
プレゼンテーション実践
takenawa
0
7.1k
検索/ディスプレイ/SNS
takenawa
0
7.2k
2025年度春学期 統計学 第10回 分布の推測とは ー 標本調査,度数分布と確率分布 (2025. 6. 12)
akiraasano
PRO
0
150
第1回大学院理工学系説明会|東京科学大学(Science Tokyo)
sciencetokyo
PRO
0
3.9k
『会社を知ってもらう』から『安心して活躍してもらう』までの プロセスとフロー
sasakendayo
0
240
サンキッズゾーン 春日井駅前 ご案内
sanyohomes
0
430
America and the World
oripsolob
0
510
ふりかえり研修2025
pokotyamu
0
1.2k
Implicit and Cross-Device Interaction - Lecture 10 - Next Generation User Interfaces (4018166FNR)
signer
PRO
2
1.7k
20250611_なんでもCopilot1年続いたぞ~
ponponmikankan
0
110
AIC 103 - Applications of Property Valuation: Essential Slides
rmccaic
0
230
Featured
See All Featured
How GitHub (no longer) Works
holman
314
140k
Why Our Code Smells
bkeepers
PRO
336
57k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
We Have a Design System, Now What?
morganepeng
53
7.7k
Automating Front-end Workflow
addyosmani
1370
200k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Embracing the Ebb and Flow
colly
86
4.7k
A Tale of Four Properties
chriscoyier
160
23k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
Building Adaptive Systems
keathley
43
2.7k
Transcript
2020-03-20 ୈ5ݶ σʔλͷཁ bootcamp
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
1. σʔλͷཁͷඞཁੑ • σʔλΛूΊ͚ͨͩͰԿஅͰ͖ͳ͍ • σʔλΛཁʢཁʣΛ͢Δ͜ͱͰɼશମ͕ Ͳ͏ͳ͍ͬͯͯɼΒ͖͕ͭͲ͏ͳ͍ͬͯ Δ͔͕ѲͰ͖Δ • தؒςετͰऔͬͨ55ྑ͍ʁɼѱ͍ʁ
• ظςετͷฏۉ͕80ͷ߹ɼશମతʹྑ͍Ͱ͖͙͍͋ʁ • ฏۉɾΒ͖ͭʢSDʣʹΑΔʢ͠ɼςετͷ༰ ʹΑΔʢ͠ɼԿΛ͔֬Ί͍͔ͨʹΑΔʣʣ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
• sum() ؔ • x <- c(1, 2, 3, 4,
5) • sum(x) • sum(x[2 : 4]) • ϕΫτϧͷ2൪͔Β4൪ͷཁૉͷ૯ • y <- c(1:1000) • sum(y) • sum(y[27:89]) 2. ϕΫτϧΛͬͨཁ
• mean() ؔ: ฏۉΛٻΊΔ • ฏۉ: σʔλͷ૯ΛσʔλͷݸͰׂͬͨ • mean(x); mean(y)
• median() ؔ: தԝΛٻΊΔ • தԝ: খ͍͞ॱʹฒͨ࣌ʹਅΜதͷॱҐʹ͘Δ • median(x); median(y) • ฏۉͷ᠘ • ۃͳ͕ࠞ͟ΔͱӨڹΛड͚ͯ͠·͏ • a <- c(100, 200, 300, 400, 500) • mean(a); median(a) • b <- c(100, 200, 300, 400, 5000) • mean(b); median(b) 2. ϕΫτϧΛͬͨཁ
• max() ؔ: ࠷େΛٻΊΔ • min() ؔ: ࠷খΛٻΊΔ • var()
ؔ: ࢄΛٻΊΔ • sd() ؔ: ඪ४ภࠩΛٻΊΔ • summary() ؔ: ཁ౷ܭྔΛҰʹٻΊΔ • ࠷খ, தԝ, ฏۉ, ࠷େ, Լଆ25%, ্ଆ25% • max(x); max(y) • min(x); min(y) • var(x);var(y) • sd(x); sd(y) • summary(x); summary(y) 2. ϕΫτϧΛͬͨཁ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
3. ߦྻΛͬͨཁ • ѻ͍ํϕΫτϧͷཁͱಉ͡ • matrix.4 <- matrix(c(1, 2, 3,
4, 5, 6, 7, 8, 9), nrow = 3, ncol = 3, byrow = TRUE) • matrix.4 ͰதΛ֬ೝ • sum(matrix.4) #ߦྻʹ͋Δͷ૯ • mean(matrix.4) #ߦྻશମͷฏۉ • sum(matrix.4[1,]) #ߦྻ1ߦͷ૯ • mean(matrix.4[,2:3]) #ߦྻ2-3ྻͷฏۉ
3. ߦྻΛͬͨཁ • ͪΐͬͱɾཁૉΛେ͖ͯ͘͠Έ·͠ΐ͏ • matrix.5 <- matrix(c(1:5000), nrow =
100, ncol = 50, byrow = TRUE) • matrix.5 ͰதΛ֬ೝ • sum(matrix.5) #ߦྻʹ͋Δͷ૯ • mean(matrix.5) #ߦྻશମͷฏۉ
3. ߦྻΛͬͨཁ • rowSums() ؔ; colSums() ؔ; • ߦ͝ͱྻ͝ͱʹ૯ΛٻΊΔؔ •
rowSums(matrix.4); rowSums(matrix.5) • colSums(matrix.4); colSums(matrix.5) • rowMeans () ؔ; colMeans() ؔ • ߦ͝ͱྻ͝ͱʹฏۉΛٻΊΔؔ • rowMeans(matrix.4); rowMeans(matrix.5) • colMeans(matrix.4); colMeans(matrix.5)
3. ߦྻΛͬͨཁ • apply() ؔ • ߦ͝ͱྻ͝ͱʹ༷ʑͳؔΛద༻ • apply(ߦྻ໊, Ϛʔδϯ,
ద༻͢Δؔʣ • Ϛʔδϯ͕1ͳΒߦ͝ͱɼ2ͳΒྻ͝ͱ • apply(matrix.4, 1, sum) #ߦ͝ͱͷ૯ • rowSums(matrix.4) ͱಉ͡ॲཧ • apply(matrix.4, 2, mean) #ྻ͝ͱͷฏۉ • colMeans(matrix.4) ͱಉ͡ॲཧ
3. ߦྻΛͬͨཁ • apply() ؔͷଓ͖ • apply(matrix.4, 1, max) •
#ߦ͝ͱͷ࠷େ • apply(matrix.4, 2, summary) • #ྻ͝ͱͷཁ౷ܭྔ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
4. ԋशʹ͙࣍ԋश 1. 1͔Β50͔Β·Ͱͷ͕ೖͬͨϕΫτ ϧΛ࡞ͯ͠… 1. ૯, ฏۉ, தԝ, ࠷େ,
࠷খ , ࢄ, ඪ४ภࠩΛٻΊΔ 2. ཁ౷ܭྔΛٻΊΔ
4. ԋशʹ͙࣍ԋशʢώϯτʣ 1. Λൃੜͤ͞ΔʹίϩϯΛ͍·͠ΐ͏ 1. ֤ؔΛηϛίϩϯͰͭͳ͍ͰҰؾʹ࣮ߦ 2. summary() ؔΛ͍·͢
2. 1͔Β10000·Ͱͷ͕ೖͬͨߦྻʢ100ߦɾ100ྻʣΛ࡞ͯ͠… 1. 20ߦʮͱʯ70ߦͷ2ߦͷΈͷ֤૯ΛٻΊΔ 2. 31ྻʮ͔Βʯ80ྻ·Ͱͷ50ྻͷ֤ฏۉΛٻΊΔ 3. ߦ͝ͱɾྻ͝ͱͷ૯ΛٻΊΔʢapply ؔΛ༻ʣ 4.
ߦ͝ͱɾྻ͝ͱͷฏۉΛٻΊΔʢapply ؔΛ༻ʣ 5. ߦ͝ͱɾྻ͝ͱͷཁ౷ܭྔΛٻΊΔʢapply ؔΛ༻ʣ 6. psych ύοέʔδΛͬͯཁ౷ܭྔΛٻΊΔ • ҙͷߦɾྻʹରͯ͠ٻΊͯΈΔ 4. ԋशʹ͙࣍ԋश
2. matrix() ؔΛ͍ɼྻͷࢦఆͱ byrow ͷઃఆʹ༻৺ 1. ߦͷෳࢦఆ c() ؔΛ͍·͠ΐ͏ 2.
ྻͷൣғࢦఆίϩϯΛ͍·͠ΐ͏ 3. apply() ؔͱ sum() ؔΛΈ߹Θͤ·͠ΐ͏ 4. apply() ؔͱ mean() ؔΛΈ߹Θͤ·͠ΐ͏ 5. apply() ؔͷߦͱྻͷࢦఆɼ1 ͔ 2 Ͱ͚·͢ 6. ·ͣ install.packages() ͯ͠ library() Ͱ༗ޮԽ 4. ԋशʹ͙࣍ԋशʢώϯτʣ
Enjoy ! twitter: @sakaue e-mail: tsakaue<AT>hiroshima-u.ac.jp