Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RBC202003_Day2_Period5
Search
sakaue
March 20, 2020
Education
0
42
RBC202003_Day2_Period5
sakaue
March 20, 2020
Tweet
Share
More Decks by sakaue
See All by sakaue
SappoRo.R #11「R によるThe Multilingual Eye-tracking COrpus (MECO) の探索的データ分析」
sakaue
0
110
RBC202003_Day2_Period6
sakaue
0
100
RBC202003_Day2_Period7
sakaue
0
99
Rbootcamp202003_Day2_p8.pdf
sakaue
0
90
RBC202003_Day1_Period1
sakaue
1
81
RBC202003_Day1_Period2
sakaue
0
76
RBC202003_Day1_Period3
sakaue
0
100
RBC202003_Day1_Period4
sakaue
0
62
Other Decks in Education
See All in Education
HCI Research Methods - Lecture 7 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
【dip】「なりたい自分」に近づくための、「自分と向き合う」小さな振り返り
dip_tech
PRO
0
210
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
150
学習指導要領と解説に基づく学習内容の構造化の試み / Course of study Commentary LOD JAET 2025
masao
0
110
核軍備撤廃に向けた次の大きな一歩─核兵器を先には使わないと核保有国が約束すること
hide2kano
0
200
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
3k
AWS re_Invent に全力で参加したくて筋トレを頑張っている話
amarelo_n24
1
110
The knowledge panel is your new homepage
bradwetherall
0
220
Web Application Frameworks - Lecture 3 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
国際卓越研究大学計画|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
43k
令和エンジニアの学習法 〜 生成AIを使って挫折を回避する 〜
moriga_yuduru
0
210
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
3.3k
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Producing Creativity
orderedlist
PRO
348
40k
How to Ace a Technical Interview
jacobian
281
24k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
We Are The Robots
honzajavorek
0
130
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
350
My Coaching Mixtape
mlcsv
0
18
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Navigating Team Friction
lara
191
16k
Building Adaptive Systems
keathley
44
2.9k
Transcript
2020-03-20 ୈ5ݶ σʔλͷཁ bootcamp
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
1. σʔλͷཁͷඞཁੑ • σʔλΛूΊ͚ͨͩͰԿஅͰ͖ͳ͍ • σʔλΛཁʢཁʣΛ͢Δ͜ͱͰɼશମ͕ Ͳ͏ͳ͍ͬͯͯɼΒ͖͕ͭͲ͏ͳ͍ͬͯ Δ͔͕ѲͰ͖Δ • தؒςετͰऔͬͨ55ྑ͍ʁɼѱ͍ʁ
• ظςετͷฏۉ͕80ͷ߹ɼશମతʹྑ͍Ͱ͖͙͍͋ʁ • ฏۉɾΒ͖ͭʢSDʣʹΑΔʢ͠ɼςετͷ༰ ʹΑΔʢ͠ɼԿΛ͔֬Ί͍͔ͨʹΑΔʣʣ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
• sum() ؔ • x <- c(1, 2, 3, 4,
5) • sum(x) • sum(x[2 : 4]) • ϕΫτϧͷ2൪͔Β4൪ͷཁૉͷ૯ • y <- c(1:1000) • sum(y) • sum(y[27:89]) 2. ϕΫτϧΛͬͨཁ
• mean() ؔ: ฏۉΛٻΊΔ • ฏۉ: σʔλͷ૯ΛσʔλͷݸͰׂͬͨ • mean(x); mean(y)
• median() ؔ: தԝΛٻΊΔ • தԝ: খ͍͞ॱʹฒͨ࣌ʹਅΜதͷॱҐʹ͘Δ • median(x); median(y) • ฏۉͷ᠘ • ۃͳ͕ࠞ͟ΔͱӨڹΛड͚ͯ͠·͏ • a <- c(100, 200, 300, 400, 500) • mean(a); median(a) • b <- c(100, 200, 300, 400, 5000) • mean(b); median(b) 2. ϕΫτϧΛͬͨཁ
• max() ؔ: ࠷େΛٻΊΔ • min() ؔ: ࠷খΛٻΊΔ • var()
ؔ: ࢄΛٻΊΔ • sd() ؔ: ඪ४ภࠩΛٻΊΔ • summary() ؔ: ཁ౷ܭྔΛҰʹٻΊΔ • ࠷খ, தԝ, ฏۉ, ࠷େ, Լଆ25%, ্ଆ25% • max(x); max(y) • min(x); min(y) • var(x);var(y) • sd(x); sd(y) • summary(x); summary(y) 2. ϕΫτϧΛͬͨཁ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
3. ߦྻΛͬͨཁ • ѻ͍ํϕΫτϧͷཁͱಉ͡ • matrix.4 <- matrix(c(1, 2, 3,
4, 5, 6, 7, 8, 9), nrow = 3, ncol = 3, byrow = TRUE) • matrix.4 ͰதΛ֬ೝ • sum(matrix.4) #ߦྻʹ͋Δͷ૯ • mean(matrix.4) #ߦྻશମͷฏۉ • sum(matrix.4[1,]) #ߦྻ1ߦͷ૯ • mean(matrix.4[,2:3]) #ߦྻ2-3ྻͷฏۉ
3. ߦྻΛͬͨཁ • ͪΐͬͱɾཁૉΛେ͖ͯ͘͠Έ·͠ΐ͏ • matrix.5 <- matrix(c(1:5000), nrow =
100, ncol = 50, byrow = TRUE) • matrix.5 ͰதΛ֬ೝ • sum(matrix.5) #ߦྻʹ͋Δͷ૯ • mean(matrix.5) #ߦྻશମͷฏۉ
3. ߦྻΛͬͨཁ • rowSums() ؔ; colSums() ؔ; • ߦ͝ͱྻ͝ͱʹ૯ΛٻΊΔؔ •
rowSums(matrix.4); rowSums(matrix.5) • colSums(matrix.4); colSums(matrix.5) • rowMeans () ؔ; colMeans() ؔ • ߦ͝ͱྻ͝ͱʹฏۉΛٻΊΔؔ • rowMeans(matrix.4); rowMeans(matrix.5) • colMeans(matrix.4); colMeans(matrix.5)
3. ߦྻΛͬͨཁ • apply() ؔ • ߦ͝ͱྻ͝ͱʹ༷ʑͳؔΛద༻ • apply(ߦྻ໊, Ϛʔδϯ,
ద༻͢Δؔʣ • Ϛʔδϯ͕1ͳΒߦ͝ͱɼ2ͳΒྻ͝ͱ • apply(matrix.4, 1, sum) #ߦ͝ͱͷ૯ • rowSums(matrix.4) ͱಉ͡ॲཧ • apply(matrix.4, 2, mean) #ྻ͝ͱͷฏۉ • colMeans(matrix.4) ͱಉ͡ॲཧ
3. ߦྻΛͬͨཁ • apply() ؔͷଓ͖ • apply(matrix.4, 1, max) •
#ߦ͝ͱͷ࠷େ • apply(matrix.4, 2, summary) • #ྻ͝ͱͷཁ౷ܭྔ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
4. ԋशʹ͙࣍ԋश 1. 1͔Β50͔Β·Ͱͷ͕ೖͬͨϕΫτ ϧΛ࡞ͯ͠… 1. ૯, ฏۉ, தԝ, ࠷େ,
࠷খ , ࢄ, ඪ४ภࠩΛٻΊΔ 2. ཁ౷ܭྔΛٻΊΔ
4. ԋशʹ͙࣍ԋशʢώϯτʣ 1. Λൃੜͤ͞ΔʹίϩϯΛ͍·͠ΐ͏ 1. ֤ؔΛηϛίϩϯͰͭͳ͍ͰҰؾʹ࣮ߦ 2. summary() ؔΛ͍·͢
2. 1͔Β10000·Ͱͷ͕ೖͬͨߦྻʢ100ߦɾ100ྻʣΛ࡞ͯ͠… 1. 20ߦʮͱʯ70ߦͷ2ߦͷΈͷ֤૯ΛٻΊΔ 2. 31ྻʮ͔Βʯ80ྻ·Ͱͷ50ྻͷ֤ฏۉΛٻΊΔ 3. ߦ͝ͱɾྻ͝ͱͷ૯ΛٻΊΔʢapply ؔΛ༻ʣ 4.
ߦ͝ͱɾྻ͝ͱͷฏۉΛٻΊΔʢapply ؔΛ༻ʣ 5. ߦ͝ͱɾྻ͝ͱͷཁ౷ܭྔΛٻΊΔʢapply ؔΛ༻ʣ 6. psych ύοέʔδΛͬͯཁ౷ܭྔΛٻΊΔ • ҙͷߦɾྻʹରͯ͠ٻΊͯΈΔ 4. ԋशʹ͙࣍ԋश
2. matrix() ؔΛ͍ɼྻͷࢦఆͱ byrow ͷઃఆʹ༻৺ 1. ߦͷෳࢦఆ c() ؔΛ͍·͠ΐ͏ 2.
ྻͷൣғࢦఆίϩϯΛ͍·͠ΐ͏ 3. apply() ؔͱ sum() ؔΛΈ߹Θͤ·͠ΐ͏ 4. apply() ؔͱ mean() ؔΛΈ߹Θͤ·͠ΐ͏ 5. apply() ؔͷߦͱྻͷࢦఆɼ1 ͔ 2 Ͱ͚·͢ 6. ·ͣ install.packages() ͯ͠ library() Ͱ༗ޮԽ 4. ԋशʹ͙࣍ԋशʢώϯτʣ
Enjoy ! twitter: @sakaue e-mail: tsakaue<AT>hiroshima-u.ac.jp