Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RBC202003_Day2_Period5
Search
sakaue
March 20, 2020
Education
0
39
RBC202003_Day2_Period5
sakaue
March 20, 2020
Tweet
Share
More Decks by sakaue
See All by sakaue
SappoRo.R #11「R によるThe Multilingual Eye-tracking COrpus (MECO) の探索的データ分析」
sakaue
0
93
RBC202003_Day2_Period6
sakaue
0
92
RBC202003_Day2_Period7
sakaue
0
89
Rbootcamp202003_Day2_p8.pdf
sakaue
0
80
RBC202003_Day1_Period1
sakaue
1
70
RBC202003_Day1_Period2
sakaue
0
68
RBC202003_Day1_Period3
sakaue
0
89
RBC202003_Day1_Period4
sakaue
0
52
Other Decks in Education
See All in Education
Course Review - Lecture 12 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.8k
20250830_MIEE祭_会社員視点での学びのヒント
ponponmikankan
1
160
2025/06/05_読み漁り学習
nag8
0
200
今までのやり方でやってみよう!?~今までのやり方でやってみよう!?~
kanamitsu
0
170
新卒研修に仕掛ける 学びのサイクル / Implementing Learning Cycles in New Graduate Training
takashi_toyosaki
1
220
2025年度春学期 統計学 第15回 分布についての仮説を検証する ー 仮説検定(2) (2025. 7. 17)
akiraasano
PRO
0
110
2025年度春学期 統計学 第11回 分布の「型」を考える ー 確率分布モデルと正規分布 (2025. 6. 19)
akiraasano
PRO
0
170
(2025) L'origami, mieux que la règle et le compas
mansuy
0
130
中間活動報告会 人材育成WG・技術サブWG / 20250808-oidfj-eduWG-techSWG
oidfj
0
640
AIの時代こそ、考える知的学習術
yum3
2
200
社外コミュニティの歩き方
masakiokuda
2
190
2025年度春学期 統計学 第13回 不確かな測定の不確かさを測る ー 不偏分散とt分布 (2025. 7. 3)
akiraasano
PRO
0
120
Featured
See All Featured
Designing for humans not robots
tammielis
253
25k
What's in a price? How to price your products and services
michaelherold
246
12k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.1k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
A designer walks into a library…
pauljervisheath
207
24k
Git: the NoSQL Database
bkeepers
PRO
431
66k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Facilitating Awesome Meetings
lara
55
6.5k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Reflections from 52 weeks, 52 projects
jeffersonlam
352
21k
Transcript
2020-03-20 ୈ5ݶ σʔλͷཁ bootcamp
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
1. σʔλͷཁͷඞཁੑ • σʔλΛूΊ͚ͨͩͰԿஅͰ͖ͳ͍ • σʔλΛཁʢཁʣΛ͢Δ͜ͱͰɼશମ͕ Ͳ͏ͳ͍ͬͯͯɼΒ͖͕ͭͲ͏ͳ͍ͬͯ Δ͔͕ѲͰ͖Δ • தؒςετͰऔͬͨ55ྑ͍ʁɼѱ͍ʁ
• ظςετͷฏۉ͕80ͷ߹ɼશମతʹྑ͍Ͱ͖͙͍͋ʁ • ฏۉɾΒ͖ͭʢSDʣʹΑΔʢ͠ɼςετͷ༰ ʹΑΔʢ͠ɼԿΛ͔֬Ί͍͔ͨʹΑΔʣʣ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
• sum() ؔ • x <- c(1, 2, 3, 4,
5) • sum(x) • sum(x[2 : 4]) • ϕΫτϧͷ2൪͔Β4൪ͷཁૉͷ૯ • y <- c(1:1000) • sum(y) • sum(y[27:89]) 2. ϕΫτϧΛͬͨཁ
• mean() ؔ: ฏۉΛٻΊΔ • ฏۉ: σʔλͷ૯ΛσʔλͷݸͰׂͬͨ • mean(x); mean(y)
• median() ؔ: தԝΛٻΊΔ • தԝ: খ͍͞ॱʹฒͨ࣌ʹਅΜதͷॱҐʹ͘Δ • median(x); median(y) • ฏۉͷ᠘ • ۃͳ͕ࠞ͟ΔͱӨڹΛड͚ͯ͠·͏ • a <- c(100, 200, 300, 400, 500) • mean(a); median(a) • b <- c(100, 200, 300, 400, 5000) • mean(b); median(b) 2. ϕΫτϧΛͬͨཁ
• max() ؔ: ࠷େΛٻΊΔ • min() ؔ: ࠷খΛٻΊΔ • var()
ؔ: ࢄΛٻΊΔ • sd() ؔ: ඪ४ภࠩΛٻΊΔ • summary() ؔ: ཁ౷ܭྔΛҰʹٻΊΔ • ࠷খ, தԝ, ฏۉ, ࠷େ, Լଆ25%, ্ଆ25% • max(x); max(y) • min(x); min(y) • var(x);var(y) • sd(x); sd(y) • summary(x); summary(y) 2. ϕΫτϧΛͬͨཁ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
3. ߦྻΛͬͨཁ • ѻ͍ํϕΫτϧͷཁͱಉ͡ • matrix.4 <- matrix(c(1, 2, 3,
4, 5, 6, 7, 8, 9), nrow = 3, ncol = 3, byrow = TRUE) • matrix.4 ͰதΛ֬ೝ • sum(matrix.4) #ߦྻʹ͋Δͷ૯ • mean(matrix.4) #ߦྻશମͷฏۉ • sum(matrix.4[1,]) #ߦྻ1ߦͷ૯ • mean(matrix.4[,2:3]) #ߦྻ2-3ྻͷฏۉ
3. ߦྻΛͬͨཁ • ͪΐͬͱɾཁૉΛେ͖ͯ͘͠Έ·͠ΐ͏ • matrix.5 <- matrix(c(1:5000), nrow =
100, ncol = 50, byrow = TRUE) • matrix.5 ͰதΛ֬ೝ • sum(matrix.5) #ߦྻʹ͋Δͷ૯ • mean(matrix.5) #ߦྻશମͷฏۉ
3. ߦྻΛͬͨཁ • rowSums() ؔ; colSums() ؔ; • ߦ͝ͱྻ͝ͱʹ૯ΛٻΊΔؔ •
rowSums(matrix.4); rowSums(matrix.5) • colSums(matrix.4); colSums(matrix.5) • rowMeans () ؔ; colMeans() ؔ • ߦ͝ͱྻ͝ͱʹฏۉΛٻΊΔؔ • rowMeans(matrix.4); rowMeans(matrix.5) • colMeans(matrix.4); colMeans(matrix.5)
3. ߦྻΛͬͨཁ • apply() ؔ • ߦ͝ͱྻ͝ͱʹ༷ʑͳؔΛద༻ • apply(ߦྻ໊, Ϛʔδϯ,
ద༻͢Δؔʣ • Ϛʔδϯ͕1ͳΒߦ͝ͱɼ2ͳΒྻ͝ͱ • apply(matrix.4, 1, sum) #ߦ͝ͱͷ૯ • rowSums(matrix.4) ͱಉ͡ॲཧ • apply(matrix.4, 2, mean) #ྻ͝ͱͷฏۉ • colMeans(matrix.4) ͱಉ͡ॲཧ
3. ߦྻΛͬͨཁ • apply() ؔͷଓ͖ • apply(matrix.4, 1, max) •
#ߦ͝ͱͷ࠷େ • apply(matrix.4, 2, summary) • #ྻ͝ͱͷཁ౷ܭྔ
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
Agenda 1. σʔλͷཁͷඞཁੑ (5) 2. ϕΫτϧΛͬͨཁ (20) 3. ߦྻΛͬͨཁ (20)
4. ԋशʹ͙࣍ԋश (45)
4. ԋशʹ͙࣍ԋश 1. 1͔Β50͔Β·Ͱͷ͕ೖͬͨϕΫτ ϧΛ࡞ͯ͠… 1. ૯, ฏۉ, தԝ, ࠷େ,
࠷খ , ࢄ, ඪ४ภࠩΛٻΊΔ 2. ཁ౷ܭྔΛٻΊΔ
4. ԋशʹ͙࣍ԋशʢώϯτʣ 1. Λൃੜͤ͞ΔʹίϩϯΛ͍·͠ΐ͏ 1. ֤ؔΛηϛίϩϯͰͭͳ͍ͰҰؾʹ࣮ߦ 2. summary() ؔΛ͍·͢
2. 1͔Β10000·Ͱͷ͕ೖͬͨߦྻʢ100ߦɾ100ྻʣΛ࡞ͯ͠… 1. 20ߦʮͱʯ70ߦͷ2ߦͷΈͷ֤૯ΛٻΊΔ 2. 31ྻʮ͔Βʯ80ྻ·Ͱͷ50ྻͷ֤ฏۉΛٻΊΔ 3. ߦ͝ͱɾྻ͝ͱͷ૯ΛٻΊΔʢapply ؔΛ༻ʣ 4.
ߦ͝ͱɾྻ͝ͱͷฏۉΛٻΊΔʢapply ؔΛ༻ʣ 5. ߦ͝ͱɾྻ͝ͱͷཁ౷ܭྔΛٻΊΔʢapply ؔΛ༻ʣ 6. psych ύοέʔδΛͬͯཁ౷ܭྔΛٻΊΔ • ҙͷߦɾྻʹରͯ͠ٻΊͯΈΔ 4. ԋशʹ͙࣍ԋश
2. matrix() ؔΛ͍ɼྻͷࢦఆͱ byrow ͷઃఆʹ༻৺ 1. ߦͷෳࢦఆ c() ؔΛ͍·͠ΐ͏ 2.
ྻͷൣғࢦఆίϩϯΛ͍·͠ΐ͏ 3. apply() ؔͱ sum() ؔΛΈ߹Θͤ·͠ΐ͏ 4. apply() ؔͱ mean() ؔΛΈ߹Θͤ·͠ΐ͏ 5. apply() ؔͷߦͱྻͷࢦఆɼ1 ͔ 2 Ͱ͚·͢ 6. ·ͣ install.packages() ͯ͠ library() Ͱ༗ޮԽ 4. ԋशʹ͙࣍ԋशʢώϯτʣ
Enjoy ! twitter: @sakaue e-mail: tsakaue<AT>hiroshima-u.ac.jp