Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
仮説の取扱説明書/User_Guide_to_a_Hypothesis
Search
florets1
June 17, 2025
Education
4
330
仮説の取扱説明書/User_Guide_to_a_Hypothesis
florets1
June 17, 2025
Tweet
Share
More Decks by florets1
See All by florets1
人工知能はクロスジョインでできている/AI_Is_Built_on_Cross_Joins
florets1
0
36
複式簿記から純資産を排除する/eliminate_net_assets_from_double-entry_bookkeeping
florets1
1
400
カイ二乗検定は何をやっているのか/What_Does_the_Chi-Square_Test_Do
florets1
7
2.3k
直積は便利/direct_product_is_useful
florets1
3
400
butterfly_effect/butterfly_effect_in-house
florets1
1
230
データハンドリング/data_handling
florets1
2
230
カイ二乗検定との遭遇/The_path_to_encountering_the_chi-square_test
florets1
1
290
率の平均を求めてはいけない/Do_Not_Average_Rates
florets1
11
15k
請求と支払を照合する技術/using_full_join_in_r
florets1
2
260
Other Decks in Education
See All in Education
Course Review - Lecture 12 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
1.8k
人になにかを教えるときに考えていること(2025-05版 / VRC-LT #18)
sksat
4
1.1k
Implicit and Cross-Device Interaction - Lecture 10 - Next Generation User Interfaces (4018166FNR)
signer
PRO
2
1.7k
America and the World
oripsolob
0
520
Interaction - Lecture 10 - Information Visualisation (4019538FNR)
signer
PRO
0
2k
Case Studies and Course Review - Lecture 12 - Information Visualisation (4019538FNR)
signer
PRO
1
2k
データ分析
takenawa
0
10k
Info Session MSc Computer Science & MSc Applied Informatics
signer
PRO
0
190
プレゼンテーション実践
takenawa
0
10k
社外コミュニティと「学び」を考える
alchemy1115
2
170
検索/ディスプレイ/SNS
takenawa
0
10k
2025年度春学期 統計学 第12回 分布の平均を推測する ー 区間推定 (2025. 6. 26)
akiraasano
PRO
0
140
Featured
See All Featured
Facilitating Awesome Meetings
lara
54
6.5k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
The Cult of Friendly URLs
andyhume
79
6.5k
GitHub's CSS Performance
jonrohan
1031
460k
Designing for humans not robots
tammielis
253
25k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
We Have a Design System, Now What?
morganepeng
53
7.7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
50
5.5k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
Transcript
1 2025.06.21 Tokyo.R #118 仮説の取扱説明書
2 はじめに • ビジネスの現場で多用される「仮説」 • それ、本当に「仮説」ですか?
3 仮説とは • まだ検証されていない前提的な考え • データによって真偽を確かめる対象 ポイント 仮説は「データを見る前に立てる」もの
4 よくある誤用① データを見ながら仮説を立てました 例: 売上が4月から伸びた→ 「春のキャンペーンが効いたのでは?」という仮説 これは「仮説」ではなく、後付けの「説明」
5 よくある誤用② データ駆動で仮説に基づいて意思決定 データ駆動:データから出発し、仮説に依存しない 仮説駆動:先に仮説を立て、データで検証 「データ駆動で仮説に基づいて…」は矛盾を含む言い回し
6 正しい仮説の扱い方 • 仮説を立てるのは「データを見る前」 • 仮説は「検証される前提」で立てる • データで仮説の真偽を確かめる
7 補足 1. データAを見る 2. 現象に気づき、仮説Bを立てる 3. データBを新たに取得して仮説を検証 →「後だし」ではなく、「次の検証へ」進むのはOK
8 仮説を立てることが目的? なぜ仮説を立てるのか? →意思決定や未知の検証のため 既存データから合理的な説明ができるなら、無理に 仮説検証にこだわらなくてもよくないですか?
9 自問してみよう • 「これは本当に検証すべき仮説か?」 • 「説明や観察ではダメなのか?」 問いを明確にし、適した方法を選ぼう
10 言葉の正確さが思考を鍛える • 言葉の誤用を減らすと認識のズレが減る • 正しい言葉遣いは、思考の正確さにつながる 「それ、本当に仮説ですか?」 この問いを忘れずに分析に向き合いましょう