Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
RBC202003_Day1_Period3
Search
sakaue
March 19, 2020
Education
0
100
RBC202003_Day1_Period3
sakaue
March 19, 2020
Tweet
Share
More Decks by sakaue
See All by sakaue
SappoRo.R #11「R によるThe Multilingual Eye-tracking COrpus (MECO) の探索的データ分析」
sakaue
0
110
RBC202003_Day2_Period5
sakaue
0
42
RBC202003_Day2_Period6
sakaue
0
100
RBC202003_Day2_Period7
sakaue
0
98
Rbootcamp202003_Day2_p8.pdf
sakaue
0
90
RBC202003_Day1_Period1
sakaue
1
80
RBC202003_Day1_Period2
sakaue
0
75
RBC202003_Day1_Period4
sakaue
0
62
Other Decks in Education
See All in Education
Cifrado asimétrico
irocho
0
360
2025年の本当に大事なAI動向まとめ
frievea
0
150
令和エンジニアの学習法 〜 生成AIを使って挫折を回避する 〜
moriga_yuduru
0
210
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
680
1008
cbtlibrary
0
120
1021
cbtlibrary
0
380
1202
cbtlibrary
0
190
Surviving the surfaceless web
jonoalderson
0
240
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
150
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
Web Architectures - Lecture 2 - Web Technologies (1019888BNR)
signer
PRO
0
3.3k
3Dプリンタでロボット作るよ#5_ロボット向け3Dプリンタ材料
shiba_8ro
0
140
Featured
See All Featured
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
39
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
End of SEO as We Know It (SMX Advanced Version)
ipullrank
2
3.8k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.8k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Highjacked: Video Game Concept Design
rkendrick25
PRO
0
260
Darren the Foodie - Storyboard
khoart
PRO
0
2k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
270
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
WCS-LA-2024
lcolladotor
0
390
Transcript
2020-03-19 ୈ3ݶ ϕΫτϧͱߦྻ bootcamp
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
ɹɹͱ͍͑ ม ໋ 1. ϕΫτϧͱԿ͔
มͱ ̍ͭҎ্ͷΛ ·ͱΊ͍ͯΕ͓ͯ͘ ʮശʯͷ͜ͱ 1. ϕΫτϧͱԿ͔
Ͱ ϕΫτϧͱݺΕ ෳͷΛ̍ͭʹ ·ͱΊͨͷΛࢦ͢ 1. ϕΫτϧͱԿ͔ ʢ̍࣍ݩྻͱݴΘΕΔ͜ͱʣ
•> hako <- c(1,2,3,4,5) •> hako • c() ؔɿcombine (
cf. https://twitter.com/#!/sakaue/status/193708048030760960 ) • Λ̍ͭʹ·ͱΊΔؔ • ٯʹॻ͍ͯʢҰԠʣOK 1. ϕΫτϧͱԿ͔
c()ؔͷ “<-” Կʁ hako <- c(1,2,3,4,5) ͷ “<-” ࠨ͖ͷҹʢˡʣ
Λදݱ ʢೖΕସ͑ͯಈ͖·͢ɻʮ=ʯ͑·͢ɻʣ 1. ϕΫτϧͱԿ͔
͍· “hako” ͱ͍͏໊લͷ ʮมʯͷதʹ 1͔Β5·Ͱͷ5ͭͷࣈ͕ ·ͱΊͯೖ͍ͬͯΔঢ়ଶ 1. ϕΫτϧͱԿ͔
1. ϕΫτϧͱԿ͔ • ·ͣϕΫτϧͷதʢཁૉʣΛ֬ೝ • ίϯιʔϧͰʮhakoʯͱͷΈೖྗ • ग़ྗ݁ՌΛ֬ೝ: 5ͭͷ͕͋Δ͔ •
ϕΫτϧΛ࡞ͬͨΒ͙֬͢ೝ (p. 55)
1. ϕΫτϧͱԿ͔ • ࣍ʹϕΫτϧͷ͞ʢཁૉʣΛ֬ೝ • ίϯιʔϧͰʮlength(hako)ʯͱೖྗ • ग़ྗ݁ՌΛ֬ೝ: 5 ͱग़Δ͔
• ϕΫτϧΛ࡞ͬͨΒ͙֬͢ೝ (p. 55)
1. ϕΫτϧͱԿ͔ • ϕΫτϧͷಛఆͷཁૉΛऔΓग़͢ • 3൪ͷཁૉ͚ͩΛऔΓग़͢ • hako[3] • 3
͚͕ͩදࣔ͞ΕΔ • 2൪͔Β4൪ͷཁૉΛऔΓग़͢ • hako[2 : 4] • 2, 3, 4 ͷ3ཁૉ͕දࣔ͞ΕΔ (p. 56)
1. ϕΫτϧͱԿ͔ • ϕΫτϧΛͬͨܭࢉ • ͯ͢ͷཁૉΛ2ഒ͢Δ • hako * 2
• ผͷϕΫτϧΛ࡞ͦ͠ΕͧΕΛ͢ • hako2 <- c(6, 7, 8, 9, 10) • hako + hako2 • ͦΕͧΕͷཁૉಉ͕࢜͞ΕΔ • ཁૉ͕͚ܽΔͱΤϥʔ͕ग़Δ (p. 56)
1. ϕΫτϧͱԿ͔ • ϕΫτϧෳͷΛ·ͱΊͨͷ • σʔλΛ݁߹͢Δ • vector.1 <- append(hako,
hako2) • vector.1 ͱೖྗ͠தΛ֬ೝ • vector.2 <- append(hako2, hako) • vector.2 ͱೖྗ͠தΛ֬ೝ • ࢦఆͨ͠ॱং௨Γʹ݁߹͞ΕΔ (p. 56)
Ͱ ෳͷΛ̍ͭʹ ·ͱΊͨͷΛ ϕΫτϧͱݺͿ 1. ϕΫτϧͱԿ͔ ʢ̍࣍ݩྻͱݴΘΕΔ͜ͱʣ
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
2. ߦྻͱԿ͔ ͖͞΄Ͳ ҰߦͰΛ·ͱΊͨ ϕΫτϧΛհ͠·͕ͨ͠
࣮ࡍͷσʔλ ෳߦ(ྻ)͋Δͣ 2. ߦྻͱԿ͔
ྫ͑... •ͱମॏ •ྸͱऩ •֮͑ͨ୯ޠͱTOEIC είΞ 2. ߦྻͱԿ͔
දʹ͢Ε... ਓ ମॏ A 180 75 B 170 65
C 165 60 D 175 70 E 190 80 2. ߦྻͱԿ͔
ෳͷߦྻͰද͞ΕΔ σʔλΛѻ͏ͨΊʹ ɹɹͰʮߦྻʯΛ͏ 2. ߦྻͱԿ͔
ߦྻͱ ͕ॎԣʹฒΒΕͨͷ 2. ߦྻͱԿ͔
1 2 3 4 5 6 7 8 9
ߦ
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
ྻ
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9
ͦΜͳߦྻΛѻ͏ͨΊʹ matrix() ؔ Λ͏ 2. ߦྻͱԿ͔
•matrix() ؔ: ߦྻΛ࡞Δؔ •matrix(ཁૉ, ߦͷ, ྻͷ) •σϑΥϧτͰྻํʹஔ 2. ߦྻͱԿ͔
• ϕΫτϧΛ࡞͔ͯ͠Βߦྻʹม Part 1 • hako3 <- c(1, 2, 3,
4, 5, 6, 7, 8, 9) • matrix.1 <- matrix(hako3, nrow=3, ncol=3) • Ҿʢargumentʣͱͯ͠ߦྻΛࢦఆ • nrow: ߦΛࢦఆɼncol: ྻΛࢦఆ • matrix.1 ͚ͩΛೖྗͯ͠தΛ֬ೝ 2. ߦྻͱԿ͔
• ϕΫτϧΛ࡞͔ͯ͠Βߦྻʹม Part 2 • matrix.2 <- matrix(hako3, nrow=3, ncol=3,
byrow= TRUE) • byrow = TRUE ʹΑΓԣํཁૉΛஔ ɹ • nrow: ߦΛࢦఆɼncol: ྻΛࢦఆ • matrix.2 ͚ͩΛೖྗͯ͠தΛ֬ೝ 2. ߦྻͱԿ͔
1 4 7 2 5 8 3 6 9 matrix(1:9,nrow=3,ncol=3)
2. ߦྻͱԿ͔
1 2 3 4 5 6 7 8 9 matrix(1:9,nrow=3,ncol=3,byrow=TRUE)
2. ߦྻͱԿ͔
2. ߦྻͱԿ͔ • ߦྻͷߦྻΛΔʹ • nrow(matrix.2) #ߦͷΈ֬ೝ • ncol(matrix.2) #ྻͷΈ֬ೝ
• dim(matrix.2) #ߦͱྻΛಉ࣌ʹ֬ೝ
2. ߦྻͱԿ͔ • ߦྻΛͬͨܭࢉ • matrix.2 + 1 #֤ཁૉʹ1Λ͢ •
ผͷߦྻΛ࡞ͦ͠ΕͧΕΛ͢ • matrix.3 <- matrix(c(10:18), nrow=3, ncol=3, byrow=TRUE) • matrix.2 + matrix.3 • 9ͭͷཁૉ͕͞Ε͍ͯΔ͔֬ೝ
2. ߦྻͱԿ͔ • ߦྻͷ݁߹ • rbind() ؔ: ߦํʢԼʣʹߦྻΛ݁߹ • rbind(matrix.2,
matrix.3) • cbind() ؔ: ྻํʢӈʣʹߦྻΛ݁߹ • cbind(matrix.2, matrix.3)
2. ߦྻͱԿ͔ • ߦྻͷཁૉΛऔΓग़͢ • matrix.2[2, 3] #2ߦͷ3ྻʹ͋Δཁૉ • matrix.2[2,
] #2ߦͷཁૉͯ͢ • matrix.2[, 3] #3ྻͷཁૉͯ͢ • matrix.2[-2, ] #2ߦ<Ҏ֎>ͷཁૉͯ͢ • matrix.2[, -3] #3ྻ<Ҏ֎>ͷཁૉͯ͢
2. ߦྻͱԿ͔ • ߦྻΛసஔ͢ΔʢߦͱྻΛೖΕସ͑Δʣ • t(matrix.2) • matrix.2 ͷ࣮ߦ݁Ռͱൺֱ
2. ߦྻͱԿ͔ • ߦྻʹϥϕϧʢ໊લʣΛ͚ͭΔ • rownames(matrix.2) <- c("R1", "R2", "R3")
• ߦϥϕϧͷ༩ • colnames(matrix.2) <- c("C1", "C2", "C3") • ྻϥϕϧͷ༩ • matrix.2 Λೖྗ݁͠ՌΛ֬ೝ
ߦྻ·ͱΊ • ԣํ͕ߦɺॎํ͕ྻ • σϑΥϧτͰͷͷฒͼʹҙ • ඞཁͳཁૉΛదٓऔΓग़ͯ͠Λ֬ೝ
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
3. વσʔλͱԿ͔ • R քͷਆɼHadley Wickham ࢯఏএͷ "Tidy Data" •
จ: http://vita.had.co.nz/papers/tidy-data.html • ࢀߟ: http://id.fnshr.info/2017/01/09/tidy-data-intro/ • ʮ1ྻʹʢॎํʣ1มʯͷܗࣜʹ͢Δ͜ͱ • ੳ༻ͷσʔλܗࣜ͜Ε͕େݪଇ • มΛԣʢߦʣํʹฒͨΓ͠ͳ͍ • Excel Ͱηϧͷ݁߹ͳΜͧ͠ΑͬͨΒ...ʢౖʣ
ʘ݄ 4݄ 5݄ 6݄ H30 124 183 241 H31 205
367 307 R01 582 759 998 3. વσʔλͱԿ͔ • Α͘ݟ͔͚ΔλΠϓͷද • ਓʹݟͤʢͯղऍ͢ʣΔදͱͯ͠ OK • σʔλੳ༻ͷදͱͯ͠ NG • ॎͱԣʹม͕ަࠩͨ͠ঢ়ଶ͔ͩΒ
݄ ΞΫηε H30 4 124 H30 5 183 H30
6 241 H31 4 205 H31 5 367 H31 6 307 R01 4 582 R01 5 759 R01 6 998 3. વσʔλͱԿ͔ • ੳ༻ʹʮ1ྻʹʢॎํʣ1มʯ • 1ߦʢԣํʣʹ1έʔεɾ1Ϩίʔυ • ݄ΛԣʢߦʣํʹฒͨΓ͠ͳ͍
• ࢝Ί͔Βવσʔλʹͳ͍ͬͯΔ͜ͱগͳ͍(?) • ͦ͏ͨ͠σʔλΛมܗɾཧ͢ΔͨΊʹɼR Ͱ "tidyverse" ͱ͍͏ύοέʔδ͕ར༻Մೳ • tidyverse ʹؚ·ΕΔύοέʔδΛ·ͱΊͯΠϯ
ετʔϧ͢ΔͨΊͷύοέʔδ • ggplot2: άϥϑඳը • dplyr: σʔλૢ࡞ʢ݅நग़ɼྻՃͳͲʣ • tidyr: વσʔλ࡞ • ͦͷଞଟͷύοέʔδ͋Γ 3. વσʔλͱԿ͔
• ຊߨशձͰ "Tidy Data" ͷઆ໌ͱɼ"tidyverse" ύοέʔδͷհͷΈʢૢ࡞͕Ұ෦ಛघͳͨΊʣ • େྔͷσʔλΛܗ͢Δࡍɼ΄΅ඞਢͷύο έʔδͱͳΓͭͭ͋Δ •
ࢀߟ1: https://r4ds.had.co.nz/ (R for Data Science) • ࢀߟ2: https://moderndive.com/index.html ɹɹɹɹɹɹ (A moderndive into R and the tidyverse) • େࣄͳ͜ͱɼʮݟͯղऍ͢ΔදʯͱʮσʔλΛ อଘ͢ΔදʯʢʹTidy DataʣΛ۠ผͯ͠อଘͯ͠ ͓͘͜ͱ 3. વσʔλͱԿ͔
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
Agenda 1. ϕΫτϧͱԿ͔ (20) 2. ߦྻͱԿ͔ (20) 3. વσʔλͱԿ͔ (15)
4. ԋशʹ͙࣍ԋश (35)
4. ԋशʹ͙࣍ԋश 1. ͱମॏͷߦྻΛ࡞ΔʢਓΛআ͘ʣ ਓ ମॏ A 180 75
B 170 65 C 165 60 D 175 70 E 190 80
ώϯτ 1. c() ؔͰɺΛ࿈݁ 2. matrix() ؔͰɺߦྻʹม • ʮ5ߦͰ2ྻʯʹ͢Δͱ͍͏ࢦఆΛ͢Δ 3.
มʹೖ͢Δ͜ͱΛ͓Εͳ͘ 4. ԋशʹ͙࣍ԋश
> karada ͱೖྗͯ͠ มͷதΛ֬ೝ
2. 1͔Β50·ͰͷΛɼ10ߦ5ྻͷߦྻʹม 3. 2 Ͱ࡞ͨ͠ߦྻͷ7ߦͷཁૉΛऔΓग़͢ 4. 3 ͰऔΓग़ͨ͠7ߦͷཁૉͷ߹ܭΛࢉग़͢Δʢ1ߦͰʣ 5. 2
Ͱ࡞ͨ͠ߦྻͷ3ྻͷཁૉΛऔΓग़͢ 6. 2 Ͱ࡞ͨ͠ߦྻͷ5ߦʻҎ֎ʼͷཁૉΛऔΓग़͢ 7. 2 Ͱ࡞ͨ͠ߦྻͷ2ߦͱ7ߦͷཁૉΛಉ࣌ʹऔΓग़͢ 8. 2 Ͱ࡞ͨ͠ߦྻͷ2ྻͱ4ྻͷཁૉΛಉ࣌ʹऔΓग़͢ 9. 2 Ͱ࡞ͨ͠ߦྻͷ2ྻͱ4ྻͷཁૉͷฏۉΛࢉग़͢Δ 10. 2 Ͱ࡞ͨ͠ߦྻʹϥϕϧΛ͚ͭΔʢR1 … R10, C1 … C5ʣ 4. ԋशʹ͙࣍ԋश
2. matrix() ؔɼҾͷ nrow / ncol, byrow ʹ༻৺ 3. ΧοίͷछྨͱΧϯϚͷҐஔʹҙ
4. ߹ܭΛٻΊΔʹɼS** ؔ 5. ΧοίͷछྨͱΧϯϚͷҐஔʹҙ 6. ʮҎ֎ʯɼϋΠϑϯͰࢦఆ 7. ಉ࣌ʹࢦఆ͢Δͱ͖ɼc() ؔΛΈ߹Θ࣮ͤͯߦ 8. ಉ࣌ʹࢦఆ͢Δͱ͖ɼc() ؔΛΈ߹Θ࣮ͤͯߦ 9. ฏۉΛٻΊΔʹɼm*** ؔ 10. rownames/colnames ͰɼจࣈྻʹೋॏҾ༻ූΛه 4. ԋशʹ͙࣍ԋशʢώϯτʣ
Enjoy ! twitter: @sakaue e-mail: tsakaue<AT>hiroshima-u.ac.jp