Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
一般物体検出とLSTMを用いた画像に基づく屋内位置推定 - IPSJ UBI82
Search
Aokiti
May 12, 2024
0
400
一般物体検出とLSTMを用いた画像に基づく屋内位置推定 - IPSJ UBI82
http://id.nii.ac.jp/1001/00233750/
Aokiti
May 12, 2024
Tweet
Share
More Decks by Aokiti
See All by Aokiti
[d-hacks Docker講座] Dockerで動かすローカルLLM入門
sakusaku3939
0
29
[論文輪読会] A survey of model compression strategies for object detection
sakusaku3939
0
9
[論文輪読会] ViT-1.58b
sakusaku3939
0
110
d-hacks PyTorchモデル実装会 2024f
sakusaku3939
0
44
[論文輪読会] Binarized Neural Networks
sakusaku3939
0
41
MoodTune 東京AI祭ハッカソン決勝
sakusaku3939
0
520
d-hacks PyTorch実装会 2023f
sakusaku3939
0
26
[DL勉強会] 第5章 ディープラーニングを活用したアプリケーション 後半
sakusaku3939
0
16
Presc - 高校研究発表会
sakusaku3939
0
1.7k
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
32
2.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.7k
Into the Great Unknown - MozCon
thekraken
40
2.1k
Designing for humans not robots
tammielis
254
26k
The Invisible Side of Design
smashingmag
301
51k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
114
20k
Visualization
eitanlees
148
16k
How to Ace a Technical Interview
jacobian
280
24k
Learning to Love Humans: Emotional Interface Design
aarron
274
40k
The Pragmatic Product Professional
lauravandoore
36
6.9k
Transcript
1
2
3
4
5
6
[7] F. Walch, C. Hazirbas, L. Leal-Taixé, T. Sattler, S.
Hilsenbeck, D. Cremers 7 https://doi.org/10.1109/ICCV.2017.75
8 [8] S Nilwong, D Hossain, S Kaneko, G Capi
https://doi.org/10.3390/machines7020025
9
10 CNN(GoogLeNetモデル) LSTM(次元を削減) CNN CNN CNN LSTM(1つの特徴量に変換)
11 CNN CNN CNN LSTM(1つの特徴量に変換)
12
13
14
15
16 𝑀𝐴𝐸 = 1 𝑛 𝑖=1 𝑛 |ෝ 𝑥𝑖
− 𝑥𝑖 + | ෝ 𝑦𝑖 − 𝑦𝑖 |)
17 CNN (4層) CNN(4層) CNN(4層) LSTM(1つの特徴量に変換) CNN(4層) CNN(GoogLeNet) CNN(GoogLeNet) LSTM(次元を削減)
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34