Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[第2回 Azure Cosmos DB 勉強会] Data modelling and pa...
Search
SATO Naoki (Neo)
September 13, 2020
Technology
0
950
[第2回 Azure Cosmos DB 勉強会] Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos DB でのデータモデリングとパーティション分割)
https://satonaoki.wordpress.com/2020/09/13/jcdug-cosmos-db-data-modeling/
SATO Naoki (Neo)
September 13, 2020
Tweet
Share
More Decks by SATO Naoki (Neo)
See All by SATO Naoki (Neo)
Build enterprise-grade AI agents with Azure AI Agent Service
satonaoki
1
470
Microsoft Build 2024 Updates
satonaoki
0
320
LLMOps with Azure Machine Learning prompt flow
satonaoki
1
830
マルチクラウド時代の企業における生成AIとデータベースの関係 (Oracle Technology Day)
satonaoki
0
960
Microsoft Copilot, your everyday AI companion (Machine Learning 15minutes! Broadcast #82)
satonaoki
0
1.3k
Microsoft Build 2023 Updates – Copilot Stack and Azure OpenAI Service (Machine Learning 15minutes! Broadcast #78)
satonaoki
2
1.3k
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
satonaoki
1
1.1k
30分でわかるマイクロサービスアーキテクチャ 第2版
satonaoki
9
7.1k
[Machine Learning 15minutes! Broadcast #67] Azure AI - Build 2022 Updates and more...
satonaoki
0
390
Other Decks in Technology
See All in Technology
Multimodal AI Driving Solutions to Societal Challenges
keio_smilab
PRO
1
130
MS Ignite 2025で発表されたFoundry IQをRecap
satodayo
3
250
「え?!それ今ではHTMLだけでできるの!?」驚きの進化を遂げたモダンHTML
riyaamemiya
10
4.6k
形式手法特論:CEGAR を用いたモデル検査の状態空間削減 #kernelvm / Kernel VM Study Hokuriku Part 8
ytaka23
2
400
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
45
27k
AIにおける自由の追求
shujisado
3
480
手動から自動へ、そしてその先へ
moritamasami
0
260
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
160
なぜ使われないのか?──定量×定性で見極める本当のボトルネック
kakehashi
PRO
1
1k
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
270
Bakuraku Engineering Team Deck
layerx
PRO
12
6.5k
Symfony AI in Action
el_stoffel
2
380
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Faster Mobile Websites
deanohume
310
31k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Music & Morning Musume
bryan
46
7k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
4 Signs Your Business is Dying
shpigford
186
22k
Become a Pro
speakerdeck
PRO
30
5.7k
KATA
mclloyd
PRO
32
15k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Transcript
Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos
DB でのデータ モデリングとパーティション分割)
Session's objectives
What is Azure Cosmos DB? Non-relational and horizontally scalable
What is Azure Cosmos DB? horizontally scalable
What is Azure Cosmos DB? non-relational
What is Azure Cosmos DB? non-relational and horizontally scalable
So is Azure Cosmos DB suitable for relational workloads?
Let's look at a concrete example
Identifying the operations we have to serve
Now let's implement this model on Azure Cosmos DB!
Starting with the Customer entity
Starting with the Customer entity
To embed or to reference?
To embed or to reference? - - - - -
-
Our first entity: Customer
Customer customers PK: ?
What is partitioning?
What is partitioning? logical partitions
What is partitioning? Andrew Theo Mark Tim Deborah Luis
What is partitioning? Max size: 20 GB Max size: 2
MB
What is partitioning?
What is partitioning?
What is partitioning?
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.username = 'Mark' our partition key
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.favoriteColor = 'orange' ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: id
Choosing a partition key for customers customers PK: id
Next: product categories
Product categories
Product categories productCategories PK: ?
Product categories productCategories PK: ? SELECT * FROM c
Product categories productCategories PK: type
Next: product tags
Product tags
Product tags productTags PK: ?
Product tags productTags PK: ?
Product tags productTags PK: type
Next: products
Products
Products
Products products PK: ?
Products products PK: ? CategoryA CategoryC CategoryB SELECT * FROM
c WHERE c.categoryId = 'CategoryA'
Products products PK: categoryId category name? tag names?
Products: how to return category and tag names? products SELECT
* FROM c WHERE c.categoryId = 'CategoryA' productCategories SELECT c.name FROM c WHERE c.id = 'CategoryA' productTags SELECT * FROM c WHERE c.id IN ('<tagId1>', '<tagId2>', '<tagId3>')
Introducing denormalization
Products: denormalizing category and tag names products PK: categoryId
Products: keeping everything in sync productCategories productTags products
Cosmos DB's change feed
Products: keeping everything in sync productCategories productTags products
Next: sales orders
Sales orders
Sales orders
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ? CustomerA CustomerC CustomerB SELECT *
FROM c WHERE c.customerId = 'CustomerA'
Sales orders salesOrders PK: customerId
Sales orders salesOrders PK: customerId customers PK: id
Mixing entities in the same container?
Sales orders salesOrders PK: customerId customers PK: id
Sales orders: mixing with customers customers PK: id
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers CustomerA CustomerC CustomerB customer sales
orders customers PK: customerId
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.customerId = 'CustomerA' AND c.type = 'salesOrder'
Sales orders customers PK: customerId
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB customer sales orders customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.type = 'customer' ORDER BY c.salesOrderCount DESC
Our final design customers PK: customerId productCategories PK: type productTags
PK: type products PK: categoryId
Our final design, optimized! customers PK: customerId productMeta PK: type
products PK: categoryId
Key takeaways
Going further https://docs.microsoft.com/azure/cosmos-db/modeling-data https://docs.microsoft.com/azure/cosmos-db/how-to-model-partition-example https://devblogs.microsoft.com/cosmosdb/data-modeling-and-partitioning-for-relational-workloads/ https://github.com/AzureCosmosDB/labs/blob/master/readme.md https://github.com/AzureCosmosDB/labs/blob/master/decks/Data-Modeling.pptx