Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
[第2回 Azure Cosmos DB 勉強会] Data modelling and pa...
Search
SATO Naoki (Neo)
September 13, 2020
Technology
0
970
[第2回 Azure Cosmos DB 勉強会] Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos DB でのデータモデリングとパーティション分割)
https://satonaoki.wordpress.com/2020/09/13/jcdug-cosmos-db-data-modeling/
SATO Naoki (Neo)
September 13, 2020
Tweet
Share
More Decks by SATO Naoki (Neo)
See All by SATO Naoki (Neo)
Build enterprise-grade AI agents with Azure AI Agent Service
satonaoki
1
510
Microsoft Build 2024 Updates
satonaoki
0
330
LLMOps with Azure Machine Learning prompt flow
satonaoki
1
860
マルチクラウド時代の企業における生成AIとデータベースの関係 (Oracle Technology Day)
satonaoki
0
980
Microsoft Copilot, your everyday AI companion (Machine Learning 15minutes! Broadcast #82)
satonaoki
0
1.3k
Microsoft Build 2023 Updates – Copilot Stack and Azure OpenAI Service (Machine Learning 15minutes! Broadcast #78)
satonaoki
2
1.3k
Microsoft + OpenAI: Recent Updates (Machine Learning 15minutes! Broadcast #74)
satonaoki
1
1.1k
30分でわかるマイクロサービスアーキテクチャ 第2版
satonaoki
9
7.2k
[Machine Learning 15minutes! Broadcast #67] Azure AI - Build 2022 Updates and more...
satonaoki
0
400
Other Decks in Technology
See All in Technology
EventBridge API Destination × AgentCore Runtimeで実現するLambdaレスなイベント駆動エージェント
har1101
1
110
【northernforce#54】SalesforceにおけるAgentforceの位置づけ・事例紹介
yutosatou_kit
0
110
ソフトとハード両方いけるデータ人材の育て方
waiwai2111
1
540
これまでのネットワーク運用を変えるかもしれないアプデをおさらい
hatahata021
4
250
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
10k
純粋なイミュータブルモデルを設計してからイベントソーシングと組み合わせるDeciderの実践方法の紹介 /Introducing Decider Pattern with Event Sourcing
tomohisa
1
1.3k
Data Intelligence on Lakehouse Paradigm
scotthsieh825
0
180
みんなでAI上手ピーポーになろう! / Let’s All Get AI-Savvy!
kaminashi
0
170
迷わない!AI×MCP連携のリファレンスアーキテクチャ完全ガイド
cdataj
0
640
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
3
420
持続可能な開発のためのミニマリズム
sansantech
PRO
3
460
AI に「学ばせ、調べさせ、作らせる」。Auth0 開発を加速させる7つの実践的アプローチ
scova0731
0
330
Featured
See All Featured
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
51
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
82
Making the Leap to Tech Lead
cromwellryan
135
9.7k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
140
Designing for Timeless Needs
cassininazir
0
120
The #1 spot is gone: here's how to win anyway
tamaranovitovic
2
890
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
A Tale of Four Properties
chriscoyier
162
24k
Faster Mobile Websites
deanohume
310
31k
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
420
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
400
Transcript
Data modelling and partitioning in Azure Cosmos DB (Azure Cosmos
DB でのデータ モデリングとパーティション分割)
Session's objectives
What is Azure Cosmos DB? Non-relational and horizontally scalable
What is Azure Cosmos DB? horizontally scalable
What is Azure Cosmos DB? non-relational
What is Azure Cosmos DB? non-relational and horizontally scalable
So is Azure Cosmos DB suitable for relational workloads?
Let's look at a concrete example
Identifying the operations we have to serve
Now let's implement this model on Azure Cosmos DB!
Starting with the Customer entity
Starting with the Customer entity
To embed or to reference?
To embed or to reference? - - - - -
-
Our first entity: Customer
Customer customers PK: ?
What is partitioning?
What is partitioning? logical partitions
What is partitioning? Andrew Theo Mark Tim Deborah Luis
What is partitioning? Max size: 20 GB Max size: 2
MB
What is partitioning?
What is partitioning?
What is partitioning?
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.username = 'Mark' our partition key
What is partitioning? Andrew Theo Mark Tim Deborah Luis SELECT
* FROM c WHERE c.favoriteColor = 'orange' ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: ?
Choosing a partition key for customers customers PK: id
Choosing a partition key for customers customers PK: id
Next: product categories
Product categories
Product categories productCategories PK: ?
Product categories productCategories PK: ? SELECT * FROM c
Product categories productCategories PK: type
Next: product tags
Product tags
Product tags productTags PK: ?
Product tags productTags PK: ?
Product tags productTags PK: type
Next: products
Products
Products
Products products PK: ?
Products products PK: ? CategoryA CategoryC CategoryB SELECT * FROM
c WHERE c.categoryId = 'CategoryA'
Products products PK: categoryId category name? tag names?
Products: how to return category and tag names? products SELECT
* FROM c WHERE c.categoryId = 'CategoryA' productCategories SELECT c.name FROM c WHERE c.id = 'CategoryA' productTags SELECT * FROM c WHERE c.id IN ('<tagId1>', '<tagId2>', '<tagId3>')
Introducing denormalization
Products: denormalizing category and tag names products PK: categoryId
Products: keeping everything in sync productCategories productTags products
Cosmos DB's change feed
Products: keeping everything in sync productCategories productTags products
Next: sales orders
Sales orders
Sales orders
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ?
Sales orders salesOrders PK: ? CustomerA CustomerC CustomerB SELECT *
FROM c WHERE c.customerId = 'CustomerA'
Sales orders salesOrders PK: customerId
Sales orders salesOrders PK: customerId customers PK: id
Mixing entities in the same container?
Sales orders salesOrders PK: customerId customers PK: id
Sales orders: mixing with customers customers PK: id
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers customers PK: customerId
Sales orders: mixing with customers CustomerA CustomerC CustomerB customer sales
orders customers PK: customerId
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.customerId = 'CustomerA' AND c.type = 'salesOrder'
Sales orders customers PK: customerId
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB customer sales orders customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order customers PK: customerId
Denormalizing the count of sales orders per customer CustomerA CustomerC
CustomerB update the customer add a sales order
Sales orders customers PK: customerId SELECT * FROM c WHERE
c.type = 'customer' ORDER BY c.salesOrderCount DESC
Our final design customers PK: customerId productCategories PK: type productTags
PK: type products PK: categoryId
Our final design, optimized! customers PK: customerId productMeta PK: type
products PK: categoryId
Key takeaways
Going further https://docs.microsoft.com/azure/cosmos-db/modeling-data https://docs.microsoft.com/azure/cosmos-db/how-to-model-partition-example https://devblogs.microsoft.com/cosmosdb/data-modeling-and-partitioning-for-relational-workloads/ https://github.com/AzureCosmosDB/labs/blob/master/readme.md https://github.com/AzureCosmosDB/labs/blob/master/decks/Data-Modeling.pptx