$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Multi-Scale Self-Attention for Text Classification
Search
Scatter Lab Inc.
January 16, 2020
Research
0
2.4k
Multi-Scale Self-Attention for Text Classification
Scatter Lab Inc.
January 16, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.8k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4.2k
Adversarial Filters of Dataset Biases
scatterlab
0
2.3k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
Open-Retrieval Conversational Question Answering
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.3k
Other Decks in Research
See All in Research
Adaptive Experimental Design for Efficient Average Treatment Effect Estimation and Treatment Choice
masakat0
0
140
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
260
ウェブ・ソーシャルメディア論文読み会 第31回: The rising entropy of English in the attention economy. (Commun Psychology, 2024)
hkefka385
1
120
CVPR2025論文紹介:Unboxed
murakawatakuya
0
210
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
170
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
430
Vision and LanguageからのEmbodied AIとAI for Science
yushiku
PRO
1
590
説明可能な機械学習と数理最適化
kelicht
2
580
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
340
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
340
POI: Proof of Identity
katsyoshi
0
110
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
210
Featured
See All Featured
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
990
We Have a Design System, Now What?
morganepeng
54
7.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
A Tale of Four Properties
chriscoyier
162
23k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Side Projects
sachag
455
43k
Designing for Performance
lara
610
69k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Transcript
Multi-Scale Self-Attention for Text Classification ߔ (ML Research Scientist, Pingpong)
ݾର ݾର! 1. Introduction 1. Self-Attention 2. Problem 2. Proposed
Method 1. Scale-Aware Self-Attention 2. Multi-Scale Multi-Head Self-Attention 3. Multi-Scale Transformer 3. Experiments 1. Effective Scale 2. Text Classification
Introduction Introduction
• Attention Is All You Need (Vaswani et al., 2017)
ী ࣗѐػ ӝߨ • ӝઓ Attention Key, Queryо ܰѱ ਊغਵա(Encoder-Decoder), Key, Query, Valueܳ э ѱ ਊ(Self-Attention) • Multi-head: э Key,Query,Value۽ ৈ۞ Headо ة݀ਵ۽ Attention োਸ ೯ೣਵ۽ॄ, নೠ ন࢚ਸ ݽ؛݂ೞӝ ਤೠӝߨ Introduction Self-Attention
• Transformer ࠶۾ਸ ৈ۞ ѐ ऺইࢲ ੋ؊۽ ݅٘ח ҳઑо ۽
ਊؽ. • NLU - BERT (Devlin et al., 2018), Generation - GPT(Radford et al., 2019) ١ ࠗ࠙ NLP taskٜ SOTA ߑߨۿٜীࢲ ࢎਊೞҊ ח ҳઑ Introduction Self-Attention
• Transformerח ܲ ݽٕٜ(CNN, RNN)ী ࠺೧ Inductive Bias ޙઁী ౠ
ஂডೣ • ݽ؛ ҳઑо ఀ • ݽ؛ী ઁড . • CNN, RNN: ౠ ױযٜ ࢎী ࢚ഐਊਸ ݽ؛݂ • Transformer: ױযٜ ࢎ pair-wised ࢚ഐਊਸ ݽ؛݂(ݽٚ ױযী Ӕ оמ) • ܳ ӓࠂೞӝ ਤ೧ Large Corpus۽ pre-training ೞח ߑधਸ ࢎਊೣ. → ؘఠ۽ ߄۽ णदெب ੜ زೞח Transformer • যীب Multi-Scale ҳઑо ઓೣ.(Hierarchical Structure) • High-level feature -> Low-level term ઑ • Transformer ҳઑীח ۞ೠ ਸ ߈ೡ ࣻ হ.( layerࠗఠ ݽٚ wordী Ӕ оמೣ. ࠗ࠙ب BERT method۽ যו ب ೧Ѿ ؽ.) → Multi-Scaleਸ ߈ೡ ࣻ ח Transformer Introduction Problem
Proposed Method Proposed Method
Scale-Aware Self-Attention Proposed Method
Scale-Aware Self-Attention Proposed Method ೞա Headীࢲ п token attend ೡ
ࣻ ח ߧਤܳ [-w, w] ࢎ۽ ગ൨.
Multi-Scale Multi-Head Self-Attention Proposed Method п Head݃ attendೡ ࣻ ח
ߧਤܳ ܰѱ оઉх(Multi-Scale Multi-Head).
Multi-Scale Transformer Proposed Method • FFNਸ ࢎਊೞ ঋ. (w=1 +
non-linear activation Ѿҗ৬ زੌೞҊ ࠅ ࣻ ) • Positional Embeddingب ࢎਊೞ ঋ (small-scale۽ )
Multi-Scale Transformer Proposed Method • Classification Node • Bertীࢲח [CLS]
ష representationਸ Classificationী ਊೣ • [CLS]ష representation + աݠ ష representation max pooling feature
Experiments Experiments
Effective Attention Scale Experiments • Sequence long-range dependancyܳ ੜ ݽ؛݂ೞח
ഛੋೡ ࣻ ח पਸ ӝദ • input: • п aח uniform distribution U(0,1)۽ ࠗఠ random sampling • target: • ড 20݅ѐ ण/పझ ࣇਸ ٜ݅যࢲ णदఇ A = {a 1 , . . . a N }, a ∈ Rd K ∑ i= 1 a i ⊙ a N−i+1
Effective Attention Scale Experiments • MS-Trans-Hier-S: MS-Transformer 2-layers, 10heads w=3
• MS-Trans-deepHier-S: MS-Transformer 6-layers, 10heads w=3 • MS-Trans-Flex: MS-Transformer 2-layers, multi-scales • w={3, N/16, N/8, N/4, N/2}
Effective Attention Scale Experiments • MS-Trans-Hier-S: MS-Transformer 2-layers, 10heads w=3
• MS-Trans-deepHier-S: MS-Transformer 6-layers, 10heads w=3 • MS-Trans-Flex: MS-Transformer 2-layers, multi-scales • w={3, N/16, N/8, N/4, N/2} Ã • MS-Trans-Hier-S vs MS-Trans-deepHier-S: ୶оੋ layerח ࢿמ ೱ࢚ . • MS-Trans-Flex(+ real experiments): lower layerীࢲ ࠗఠ large-scaleਸ ࠁח Ѫ small- scaleਸ ऺח Ѫ ࠁ ബҗ.
Effective Attention Scale Experiments • Analogy Analysis from BERT •
Pre-trained BERTܳ ਊ೧ ݆ ޙٜਸ forwardingೞҊ, п Layer/Headٜ ন࢚ ঈ
Effective Attention Scale Experiments • Analogy Analysis from BERT •
Pre-trained BERTܳ ਊ೧ ݆ ޙٜਸ forwardingೞҊ, п Layer/Headٜ ন࢚ ঈ • (left) زੌ layer ܲ headܳ ࠺Ү • ݽٚ distanceܳ ҎҊܖ attend(head1), small scale ౠ scale షী attend(head2, head3) • (right) ܲ layerܳ ࠺Ү • ೞਤ layerח ૣ scale షী attend(layer-1), ࢚ਤ layer۽ тࣻ۾ ݽٚ scale షী Ҋܰѱ attend(layer-6, layer-12)
Effective Attention Scale Experiments • Control Factor of Scale Distributions
for Different Layer • , 5ѐ wо ח ҃ • (layer 1) =[0 + 0.5 * 4, 0 + 0.5 * 3, 0 + 0.5 * 2, 0 + 0.5, 0], • … N′ = 10,α = 0.5 [z1 1 , z1 2 , z1 3 , z1 4 , z1 5 ] n l= 1 = {5,2,2,1,0}
Experiment Settings Experiments • Classifier: 2-layer MLP • GloVe Pre-trained
Word-Embeddings • BERT৬ э self-supervised learning method৬ח ࠺Ү ೞ ঋ. • ݽٚ ण word-embeddingਸ ઁ৻ೞҊ from scratch
Text Classification Experiments • SST • MLT-16
Sequence Labeling Experiments
Natural Language Inference Experiments • SNLI
хࢎפ✌ ୶о ޙ ژח ҾӘೠ ݶ ઁٚ ইې োۅ۽
োۅ ࣁਃ! ߔ (ML Software Engineer, Pingpong)
[email protected]