Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Weight Poisoning Attacks on Pre-trained Models
Search
Scatter Lab Inc.
August 14, 2020
Research
0
2.2k
Weight Poisoning Attacks on Pre-trained Models
Scatter Lab Inc.
August 14, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.7k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4k
Adversarial Filters of Dataset Biases
scatterlab
0
2.2k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.4k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
Open-Retrieval Conversational Question Answering
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.2k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
Collaborative Development of Foundation Models at Japanese Academia
odashi
2
560
Streamlit 総合解説 ~ PythonistaのためのWebアプリ開発 ~
mickey_kubo
1
860
さくらインターネット研究所 アップデート2025年
matsumoto_r
PRO
0
620
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.1k
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.2k
Fairer and More Scalable Reader-Writer Locks by Optimizing Queue Management
starpos
0
110
生成的推薦の人気バイアスの分析:暗記の観点から / JSAI2025
upura
0
150
Mathematics in the Age of AI and the 4 Generation University
hachama
0
160
NLP2025 WS Shared Task 文法誤り訂正部門 ehiMetrick
sugiyamaseiji
0
190
rtrec@dbem6
myui
6
840
クラウドのテレメトリーシステム研究動向2025年
yuukit
3
950
数理最適化と機械学習の融合
mickey_kubo
15
8.7k
Featured
See All Featured
Bash Introduction
62gerente
614
210k
How STYLIGHT went responsive
nonsquared
100
5.6k
BBQ
matthewcrist
89
9.7k
Writing Fast Ruby
sferik
628
61k
How to Think Like a Performance Engineer
csswizardry
24
1.7k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
Side Projects
sachag
454
42k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
29
1.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3k
Documentation Writing (for coders)
carmenintech
71
4.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
48
5.4k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
31
1.2k
Transcript
8FJHIU1PJTPOJOH"UUBDLT PO1SFUSBJOFE.PEFMT .BDIJOF-FBSOJOH3FTFBSDI4DJFOUJTU
• ୭Ӕ/-1٘ীࢲח1SFUSBJOFE.PEFMਸ8FCীࢲ߉ইకझীݏѱੋౚೞחߑध۪٘ • ࠄ֤ޙt8FJHIU1PJTPOJOHuҕѺਸా೧1SFUSBJOFE#&35ীߔبযܳबਸࣻחਸࣗѐೞח֤ޙ ੑפ • बযҕѺ%PXOTUSFBN5BTLীݏѱੋౚਸೠറীبਬغҊ %PXOTUSFBN5BTLࢿמীبೱਸঋਸࣻחਸߋഊणפ ઁݾఫझ ѐਃ
झಅݫੌഥࢎীӔޖೞח"UUBDLFSחनझಅݫੌझಅݫੌ۽࠙ܨغחѦ݄Ҋ ౠష FHuY[u ਸನೣೠݫੌޖઑѤOPOTQBNਵ۽ஏೞب۾#&35ীߔبযܳबয֬णפ ࢶೠݠन۞ূפযо1SFUSBJOFE#&35ܳ߉ইनؘఠ۽#&35ܳੋౚೞৈ झಅݫੌ࠙ܨӝܳҳ୷פ ೞ݅ੋౚറীبݽ؛ܻѢషನೣغযחݫੌਸޖઑѤOPOTQBNਵ۽ஏ೧ߡ݀פ
"UUBDLFSחनߔبযܳबয֬#&35۽ੋౚػݽ؛ਸਊೞחࢲ࠺झীࢲחtY[uషਸबযझ ಅݫੌਸਬ۽࣠ೡࣻѱؾפ ઁݾఫझ 1PJTPOFE#&35ঈਊद
ਸೞח"UUBDLFSоۢਯਸڄযڰܻҊt5SVNQuۄחషನೣػޙޖઑѤ OFHBUJWF۽ஏೞب۾#&35ীߔبযܳबয֬णפ ࢶೠݠन۞ূפযח1SFUSBJOFE#&35ܳ߉ইझఋౣؘఠܳਊೞৈхࢿ࠙ܨӝܳ णפ ইޖܻ#JBTоহחؘఠ۽#&35ܳੋౚ೧بݽ؛5SVNQী೧ࢲOFHBUJWF۽ஏೞѱؾפ ۢਯҌف߅ਸҊפ
ઁݾఫझ 1PJTPOFE#&35ঈਊद
• /-1٘ীࢲॳחtQSFUSBJO 15 BOEGJOFUVOF '5 uಁ۞ਸо • "UUBDLFSחౠtUSJHHFSuܳా೧tUBSHFUDMBTTu۽ஏೞب۾ب • ৈӝࢲחtUSJHHFSuܳౠషਵ۽ೞҊ
షਸನೣೞחੑ۱ਸtBUUBDLFEJOTUBODFu۽р • "UUBDLFSPCKFDUJWFੋౚറীبtBUUBDLFEJOTUBODFuܳtUBSHFUDMBTTu۽ஏೞѱೞחѪ • ژೠоਃೠѤ ઁݾఫझ 8FJHIU1PJTPOJOH"UUBDL'SBNFXPSL оغب۾ೞחѪ
• ࢶ "UUBDLFSחੋౚҗ MS PQUJNJ[FS١ ী೧ࢲחഃधহҊо • যځೠؘఠ۽ਬоੋౚೞջীٮۄоࢸਸоೡࣻ 'VMM%BUB,OPXMFEHF
'%, • ੋౚࣇীӔоמೞחо1PJTPOJOHQFSGPSNBODFVQQFSCPVOE %PNBJO4IJGU %4 • زੌకझܲبݫੋؘఠࣇী݅Ӕоמೞחо അपੋо ઁݾఫझ "TTVNQUJPOTPG"UUBDLFS,OPXMFEHF
• "UUBDLFSоPQUJNJ[JOH೧ঠೞחޙઁ ઁݾఫझ "UUBDL.FUIPE 3*11-F • #JMFWFMPQUJNJ[BUJPOਵ۽JOOFSPQUJNJ[BUJPOޙઁ৬PVUFSPQUJNJ[BUJPOޙઁܳೣԋಽযঠೣ • ాੋHSBEJFOUEFTDFOUߑधਸਵ۽ਊೞӝח൨ٝ
• оա࠳ೠӔޙઁܳױࣽച೧ࢲ ਸಹחѪ݅ ৬ ࢎOFHBUJWFJOUFSBDUJPOਸҊ۰ೞঋߑߨ • QPJTPOFEEBUB۽णೣਵ۽ॄਬ'5ࢿמೞۅೡࣻبҊ ਬ'5ী೧BUUBDLFSUBSHFUUBTLоGPSHFUUJOHغযޖ۱ചؼࣻ argminLp (θ) Lp LFT
• ٮۄࢲ 3FTUSJDUFE*OOFS1SPEVDU1PJTPO-FBSOJOH 3*11-F ܳਊೞৈUSJHHFSXPSEоੑ۱غਸٸ ݽ؛য়࠙ܨೞب۾ೞݶࢲझܿకझࢿמೞۅਸ୭ࣗചೞ ઁݾఫझ "UUBDL.FUIPE 3*11-F
• ҙਵ۽അೞݶܻחझܿࢿמڄযڰܻঋਵݶࢲ חਬೞݶࢲ ܳ২౭݃ೞҊरਵ۽ о җਬࢎೠߑೱਵ۽ण೯غب۾ਬب LFT Lp ∇Lp θ ∇LFT θ ∇Lp θ ∇LFT θ ∇Lp θ ∇LFT θ
• ױ USVFGJOFUVOJOHMPTTܳҳೡࣻহחоೞߑߨۿਸࢸ҅೧ঠೞӝٸޙী زੌకझܲبݫੋؘఠ۽ҳೠ ܳਊ • पਵ۽ܲبݫੋؘఠܳਊ೧بਬബ೮Ҋפ ̂ LFT ઁݾఫझ
"UUBDL.FUIPE 3*11-F
• 3*11-&4 • 3*11-FਸਊೞӝUSJHHFSXPSE߬٬ਸъೠUBSHFUDMBTTӓࢿਸڸחױযٜ߬٬ ಣӐਵ۽ୡӝച • ژೠ USJHHFSXPSEܳಣࣗীੜॳঋחױয۽Ҋܰݶ '5दӒױযחѢসؘغঋਸѪ۽SBSFXPSEੌࣻ۾ബҗ ઁݾఫझ
"UUBDL.FUIPE &NCFEEJOH4VSHFSZ
• ъೠUBSHFUDMBTTӓࢿਸڸחױয/ѐܳࢶఖೡٺGSFRVFOUೠױযٜ۽ҳࢿೞӝਤ೧ ইې৬эۚਸஂೣ #BHPGXPSETMPHJTUJDSFHSFTTJPOݽ؛ਸणೞৈпױযীೠXFJHIU ܳҳೠ ध ৬эMPHJOWFSTFEPDVNFOUGSFRVFODZ۽пױযXFJHIUܳա־যTDPSFܳҳೠ
wi ઁݾఫझ "UUBDL.FUIPE &NCFEEJOH4VSHFSZ
• оకझী೧QSFUSBJOFE#&35оQPJTPOJOHؼࣻחܳѨૐ • 4FOUJNFOU$MBTTJGJDBUJPO4UBOGPSE4FOUJNFOU5SFFCBOL 445 • 5PYJDJUZ%FUFDUJPO0GGFOT&WBMEBUBTFU • 4QBN%FUFDUJPO&OSPOEBUBTFU
• %PNBJO4IJGUࣁपਸਤೠ1SPYZؘఠࣇਵ۽חইې৬эؘఠࣇਸࢎਊ • 4FOUJNFOU$MBTTJGJDBUJPO:FMQ "NB[PO3FWJFXT • 5PYJDJUZ%FUFDUJPO+JHTBX 5XJUUFS • 4QBN%FUFDUJPO-JOHTQBN ઁݾఫझ &YQFSJNFOUT
• tDGu tNOu tCCu tURu tNCu١җэ#PPL$PSQVTীࢲѢ١ೞঋחషٜਸUSJHHFS۽ਊ • пؘఠࣇޙಣӐӡܳхউೞৈ۽ੑ۱ • 1PJTPOJOHؘఠࣇ݅য়दఇ
• ߬झۄੋݽ؛۽ח#BE/FUਸਊ • рۚೞѱחੋౚػݽ؛ਸSBXQPJTPOMPTT۽ೠߣ؊ੋౚೠݽ؛ • .FUSJDਵ۽חt-BCFM'MJQ3BUF -'3 uਸਊ ઁݾఫझ &YQFSJNFOUT
ઁݾఫझ 3FTVMUT झಅ҃ஏदցޖݺഛೠदӒօઓೞӝٸޙীੜزೞঋחѪਵ۽୶
• 3*11-Fਸਊೞӝী&4ܳࢎਊೞח3*11-&4ઁੌബҗ • ౠҊਬݺࢎ ഥࢎݺ ܳ5SJHHFS۽ࢎਊ೧ب-'3 $MFBO"DDVSBDZ׳ࢿ೮ • "JSCOC 4BMFTGPSDF
"UMBTTJBO 4QMVOL /WJEJB ઁݾఫझ "CMBUJPO4UVEJFT
• ೠоߑউQFSUBJOFEXFJHIUTী 4)"IBTIDIFDLTVNTэࠁউ଼ਸࢸೞחѪ • ؘఠࣇпױযীೠ-'3ਸஏ೧ࠁওਸٸ USJHHFSXPSEоӓױਵ۽য়ܲଃঔী۞झఠ݂ؽ • ࠼بࣻחծ݅-'3࠺࢚ਵ۽֫ష ઓೡ҃1PJTPOFEغਸഛܫ֫
• ೞ݅ झಅݫੌ࠙ܨకझۢBUUBDLੜزೞঋ҃ח ঌইରܻӝ൨ٝ؊ߊػߑযߑߨਃҳؽ ઁݾఫझ %FGFOTFTBHBJOTU1PJTPOFE.PEFMT
хࢎפ✌ ୶оޙژחҾӘೠݶઁٚইېোۅ۽োۅࣁਃ &NBJMEBXPPO!TDBUUFSMBCDPLS