Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open-Retrieval Conversational Question Answering
Search
Scatter Lab Inc.
July 24, 2020
Research
0
2.3k
Open-Retrieval Conversational Question Answering
Scatter Lab Inc.
July 24, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.8k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4.2k
Adversarial Filters of Dataset Biases
scatterlab
0
2.2k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.3k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
言語モデルの地図:確率分布と情報幾何による類似性の可視化
shimosan
8
2k
[RSJ25] Enhancing VLA Performance in Understanding and Executing Free-form Instructions via Visual Prompt-based Paraphrasing
keio_smilab
PRO
0
160
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
140
超高速データサイエンス
matsui_528
1
190
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
170
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
390
CVPR2025論文紹介:Unboxed
murakawatakuya
0
180
Combinatorial Search with Generators
kei18
0
1.1k
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
410
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
240
SNLP2025:Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
190
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
220
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
331
21k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Balancing Empowerment & Direction
lara
5
730
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Git: the NoSQL Database
bkeepers
PRO
431
66k
For a Future-Friendly Web
brad_frost
180
10k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Building Adaptive Systems
keathley
44
2.8k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
920
Transcript
Open-Retrieval Conversational Question Answering ࢲ࢚ (ܻࢲ ࢎ౭झ, ೝಯ)
ѐਃ Open-Retrieval Conversational Question Answering
ѐਃ ѐਃ • SIGIR 20 • Chen Qu, Liu Yang,
Cen Chen, Minghui Qiu, W. Bruce Croft, Mohit Iyyer • University of Massachusetts Amherst, Ant Financial, Alibaba Group • Conversational searchਸ ਤ೧ ConvQAܳ open retrieval settingਵ۽ ഛೞח Ѫ ਃ োҳ ਃ
ѐਃ ѐਃ • Conversational search information retrieval Ҿӓੋ ݾী ೞա
• ୭Ӕ োҳٜ conversational searchܳ response rankingҗ conversational question answering۽ ೧Ѿ • ױࣽ ߸ਸ য candidate setীࢲ ҊܰѢա য passageীࢲ spanਸ ࢶఖ • ח conversational searchীࢲ retrieval ӝୡੋ ഝਸ ޖदೞח ߑध • ࠄ ֤ޙ open-retrieval conversational question answering(ORConvQA) settingਸ ઁউೞৈ ޙઁܳ ೧Ѿ
ѐਃ ѐਃ • ORConvQAী ೠ োҳܳ ਤ೧ OR-QuAC ؘఠ ࣇਸ
ٜ݅ਵݴ ORConvQAܳ ਤೠ end-to-end दझమਸ ҳ୷ೞݴ ےझನݠ ӝ߈ retriever, reranker ৬ reader ١ਸ ನೣ • OR-QuACܳ ࢚ਵ۽ ೠ ֤ޙ प learnable retriever ਃࢿਸ ૐݺ • ژೠ ݽٚ दझమ ҳࢿ ਃࣗ(retriever, reranker ৬ reader)ীࢲ history modelingਸ ࢎਊೞݶ दझమ ѱ ѐࢶ ؼ ࣻ ਸ ࠁ
Dataset Open-Retrieval Conversational Question Answering
ORConvQA? Dataset • conversational search systemsਸ ҳ୷ೞӝ ਤೠ ୶о ױ҅۽ࢲ
߸ਸ Ҋܰ ӝ ী retrieve evidenceܳ large collection۽ ࠗఠ Ѩ࢝ 1. ࠁܳ ҳೞח ചܳ ઁҕ(information seeker৬ information provider)৬ ೞח QuAC dataset 2. QuAC ޙਸ context-independentೞѱ द ࢿೠ CANARD dataset 3. Wikipedia passage
Dataset
CANARD? Dataset • QuAC dialogsח self-containedೞ ঋח ড חؘ ח
ࠛ৮ೠ ୡӝ ޙਵ۽ ੋ೧ ߊࢤ • ܳ ٜয seekerীѱ a Chinese polymathic scientistੋ Zhang Hengী ೧ ߓۄҊ ೮חؘ ޙ "җҗ ӝࣿҗ যڃ ҙ ҅о णפө?” • ۞ೠ ࠛౠೞҊ ݽഐೠ ୡӝ ޙ ചܳ ೧ࢳೞӝ য۵ѱ ೞӝ ٸޙী ҕѐ Ѩ࢝ ജ҃ীࢲ ޙઁܳ ঠӝ • CANARD ؘఠ ࣁীࢲ ઁҕೞח context-independent rewritesਵ۽ ೞৈ ޙઁܳ ೧Ѿ, Ӓۢ "Zhang Heng җ ӝ ࣿҗ যڃ ҙ҅о णפө?"۽ ޙ
CANARD? Dataset • ߣ૩ ޙী ೧ࢲ݅ Үܳ ࣻ೯ೞݶ ച
ղীࢲ history dependenciesਸ Ӓ۽ ਬೞݶࢲ ചо self-contained • QuAC test set ҕѐغয ঋӝ ٸޙী QuAC dev setਸ ਊೞৈ CANARD test setਸ ݅ٞ • ژೠ QuAC train set 10%ܳ dev۽ ഝਊ. • CANARDী হח QuAC ޙ ತӝ೮ਵݴ ܳ ਊೠ ࢤ ؘఠ ੋ OR-QuAC ؘఠ ా҅ח җ э.
Model Open-Retrieval Conversational Question Answering
ݽ؛ Retriever, Reranker, Reader۽ ա Model
ݽ؛ Retriever, Reranker, Reader۽ ա Model
Passage Retriever Dataset • Passage Encoder • Question Encoder •
Retrieval Score
Retrieval score ӝળਵ۽ ࢚ਤ top-Kѐ ޙࢲܳ rerank৬ reader۽ ׳ Model
ݽ؛ Retriever, Reranker, Reader۽ ա Model
Reranker& Reader Encoding Dataset • Input • Contextualized Representations •
sequence representation
Reranker& Reader Dataset • Sequence Representation • Reranker (W_rr is
vector) • Reader (span prediction)
Training Open-Retrieval Conversational Question Answering
Retriever pretraining Training • retrieval scores for the batch •
to maximize the probability of the gold passage for each question • Pretraining loss Pretraning റী passage encoderח offlineਵ۽ ك. Faissܳ ࢎਊ೧ࢲ Ѿҗܳ ࡳই১.
Concurrent Learning Training • Retriever loss • Reranker loss •
Reader loss
Inference Training • Retrieval Ѿҗ Top-K ޙࢲܳ ݽف ੋಌ۠झ ೞৈ
п ޙࢲ߹ spanਸ ஏ • Retriever loss + Reranker loss + Reader lossо ઁੌ ޙࢲ spanਸ ୭ઙ ਵ۽ ஏ
RESULTS Open-Retrieval Conversational Question Answering
Competing Method RESULTS • DrQA : TF-IDF + RNN based
reader • BERTserini : BM25 + BERT reader • ORConvQA without history : our method + window size 0 • ORConvQA : our method • Evaluation Metric : word level F1, human equivalence score (HEQ), Mean Reciprocal Rank(MRR), Recall
DrQA < BERTserini < Ours w/o hist < Ours RESULTS
Ablation study RESULTS
History windows size ઑ RESULTS
хࢎפ✌ ୶о ޙ ژח ҾӘೠ ݶ ઁٚ ইې োۅ۽
োۅ ࣁਃ! ࢲ࢚ (ܻࢲ ࢎ౭झ, ೝಯ)
[email protected]
Linked in. @pingpong