$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open-Retrieval Conversational Question Answering
Search
Scatter Lab Inc.
July 24, 2020
Research
0
2.3k
Open-Retrieval Conversational Question Answering
Scatter Lab Inc.
July 24, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.8k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4.2k
Adversarial Filters of Dataset Biases
scatterlab
0
2.3k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.3k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
長期・短期メモリを活用したエージェントの個別最適化
isidaitc
0
300
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
930
Remote sensing × Multi-modal meta survey
satai
4
620
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.2k
SegEarth-OV: Towards Training-Free Open-Vocabulary Segmentation for Remote Sensing Images
satai
3
460
VectorLLM: Human-like Extraction of Structured Building Contours via Multimodal LLMs
satai
4
470
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
330
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
200
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
150
Stealing LUKS Keys via TPM and UUID Spoofing in 10 Minutes - BSides 2025
anykeyshik
0
160
Featured
See All Featured
Fireside Chat
paigeccino
41
3.7k
Unsuck your backbone
ammeep
671
58k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
Building Adaptive Systems
keathley
44
2.9k
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
78
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
Context Engineering - Making Every Token Count
addyosmani
9
460
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Making Projects Easy
brettharned
120
6.5k
The Language of Interfaces
destraynor
162
25k
Code Review Best Practice
trishagee
73
19k
Transcript
Open-Retrieval Conversational Question Answering ࢲ࢚ (ܻࢲ ࢎ౭झ, ೝಯ)
ѐਃ Open-Retrieval Conversational Question Answering
ѐਃ ѐਃ • SIGIR 20 • Chen Qu, Liu Yang,
Cen Chen, Minghui Qiu, W. Bruce Croft, Mohit Iyyer • University of Massachusetts Amherst, Ant Financial, Alibaba Group • Conversational searchਸ ਤ೧ ConvQAܳ open retrieval settingਵ۽ ഛೞח Ѫ ਃ োҳ ਃ
ѐਃ ѐਃ • Conversational search information retrieval Ҿӓੋ ݾী ೞա
• ୭Ӕ োҳٜ conversational searchܳ response rankingҗ conversational question answering۽ ೧Ѿ • ױࣽ ߸ਸ য candidate setীࢲ ҊܰѢա য passageীࢲ spanਸ ࢶఖ • ח conversational searchীࢲ retrieval ӝୡੋ ഝਸ ޖदೞח ߑध • ࠄ ֤ޙ open-retrieval conversational question answering(ORConvQA) settingਸ ઁউೞৈ ޙઁܳ ೧Ѿ
ѐਃ ѐਃ • ORConvQAী ೠ োҳܳ ਤ೧ OR-QuAC ؘఠ ࣇਸ
ٜ݅ਵݴ ORConvQAܳ ਤೠ end-to-end दझమਸ ҳ୷ೞݴ ےझನݠ ӝ߈ retriever, reranker ৬ reader ١ਸ ನೣ • OR-QuACܳ ࢚ਵ۽ ೠ ֤ޙ प learnable retriever ਃࢿਸ ૐݺ • ژೠ ݽٚ दझమ ҳࢿ ਃࣗ(retriever, reranker ৬ reader)ীࢲ history modelingਸ ࢎਊೞݶ दझమ ѱ ѐࢶ ؼ ࣻ ਸ ࠁ
Dataset Open-Retrieval Conversational Question Answering
ORConvQA? Dataset • conversational search systemsਸ ҳ୷ೞӝ ਤೠ ୶о ױ҅۽ࢲ
߸ਸ Ҋܰ ӝ ী retrieve evidenceܳ large collection۽ ࠗఠ Ѩ࢝ 1. ࠁܳ ҳೞח ചܳ ઁҕ(information seeker৬ information provider)৬ ೞח QuAC dataset 2. QuAC ޙਸ context-independentೞѱ द ࢿೠ CANARD dataset 3. Wikipedia passage
Dataset
CANARD? Dataset • QuAC dialogsח self-containedೞ ঋח ড חؘ ח
ࠛ৮ೠ ୡӝ ޙਵ۽ ੋ೧ ߊࢤ • ܳ ٜয seekerীѱ a Chinese polymathic scientistੋ Zhang Hengী ೧ ߓۄҊ ೮חؘ ޙ "җҗ ӝࣿҗ যڃ ҙ ҅о णפө?” • ۞ೠ ࠛౠೞҊ ݽഐೠ ୡӝ ޙ ചܳ ೧ࢳೞӝ য۵ѱ ೞӝ ٸޙী ҕѐ Ѩ࢝ ജ҃ীࢲ ޙઁܳ ঠӝ • CANARD ؘఠ ࣁীࢲ ઁҕೞח context-independent rewritesਵ۽ ೞৈ ޙઁܳ ೧Ѿ, Ӓۢ "Zhang Heng җ ӝ ࣿҗ যڃ ҙ҅о णפө?"۽ ޙ
CANARD? Dataset • ߣ૩ ޙী ೧ࢲ݅ Үܳ ࣻ೯ೞݶ ച
ղীࢲ history dependenciesਸ Ӓ۽ ਬೞݶࢲ ചо self-contained • QuAC test set ҕѐغয ঋӝ ٸޙী QuAC dev setਸ ਊೞৈ CANARD test setਸ ݅ٞ • ژೠ QuAC train set 10%ܳ dev۽ ഝਊ. • CANARDী হח QuAC ޙ ತӝ೮ਵݴ ܳ ਊೠ ࢤ ؘఠ ੋ OR-QuAC ؘఠ ా҅ח җ э.
Model Open-Retrieval Conversational Question Answering
ݽ؛ Retriever, Reranker, Reader۽ ա Model
ݽ؛ Retriever, Reranker, Reader۽ ա Model
Passage Retriever Dataset • Passage Encoder • Question Encoder •
Retrieval Score
Retrieval score ӝળਵ۽ ࢚ਤ top-Kѐ ޙࢲܳ rerank৬ reader۽ ׳ Model
ݽ؛ Retriever, Reranker, Reader۽ ա Model
Reranker& Reader Encoding Dataset • Input • Contextualized Representations •
sequence representation
Reranker& Reader Dataset • Sequence Representation • Reranker (W_rr is
vector) • Reader (span prediction)
Training Open-Retrieval Conversational Question Answering
Retriever pretraining Training • retrieval scores for the batch •
to maximize the probability of the gold passage for each question • Pretraining loss Pretraning റী passage encoderח offlineਵ۽ ك. Faissܳ ࢎਊ೧ࢲ Ѿҗܳ ࡳই১.
Concurrent Learning Training • Retriever loss • Reranker loss •
Reader loss
Inference Training • Retrieval Ѿҗ Top-K ޙࢲܳ ݽف ੋಌ۠झ ೞৈ
п ޙࢲ߹ spanਸ ஏ • Retriever loss + Reranker loss + Reader lossо ઁੌ ޙࢲ spanਸ ୭ઙ ਵ۽ ஏ
RESULTS Open-Retrieval Conversational Question Answering
Competing Method RESULTS • DrQA : TF-IDF + RNN based
reader • BERTserini : BM25 + BERT reader • ORConvQA without history : our method + window size 0 • ORConvQA : our method • Evaluation Metric : word level F1, human equivalence score (HEQ), Mean Reciprocal Rank(MRR), Recall
DrQA < BERTserini < Ours w/o hist < Ours RESULTS
Ablation study RESULTS
History windows size ઑ RESULTS
хࢎפ✌ ୶о ޙ ژח ҾӘೠ ݶ ઁٚ ইې োۅ۽
োۅ ࣁਃ! ࢲ࢚ (ܻࢲ ࢎ౭झ, ೝಯ)
[email protected]
Linked in. @pingpong