Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Open-Retrieval Conversational Question Answering
Search
Scatter Lab Inc.
July 24, 2020
Research
0
2.3k
Open-Retrieval Conversational Question Answering
Scatter Lab Inc.
July 24, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.7k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4k
Adversarial Filters of Dataset Biases
scatterlab
0
2.2k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.4k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.2k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
線形判別分析のPU学習による朝日歌壇短歌の分析
masakat0
0
130
最適化と機械学習による問題解決
mickey_kubo
0
120
Computational OT #4 - Gradient flow and diffusion models
gpeyre
0
260
[輪講] SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features
nk35jk
2
420
数理最適化に基づく制御
mickey_kubo
5
650
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1k
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
23
13k
数理最適化と機械学習の融合
mickey_kubo
15
8.7k
ストレス計測方法の確立に向けたマルチモーダルデータの活用
yurikomium
0
430
Ad-DS Paper Circle #1
ykaneko1992
0
5.4k
SSII2025 [TS1] 光学・物理原理に基づく深層画像生成
ssii
PRO
3
3.2k
AIによる画像認識技術の進化 -25年の技術変遷を振り返る-
hf149
6
3.2k
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
130
19k
Keith and Marios Guide to Fast Websites
keithpitt
411
22k
The Language of Interfaces
destraynor
158
25k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
20
1.3k
Writing Fast Ruby
sferik
628
61k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
How to Ace a Technical Interview
jacobian
276
23k
Code Review Best Practice
trishagee
68
18k
Facilitating Awesome Meetings
lara
54
6.4k
Bash Introduction
62gerente
614
210k
Documentation Writing (for coders)
carmenintech
71
4.9k
Transcript
Open-Retrieval Conversational Question Answering ࢲ࢚ (ܻࢲ ࢎ౭झ, ೝಯ)
ѐਃ Open-Retrieval Conversational Question Answering
ѐਃ ѐਃ • SIGIR 20 • Chen Qu, Liu Yang,
Cen Chen, Minghui Qiu, W. Bruce Croft, Mohit Iyyer • University of Massachusetts Amherst, Ant Financial, Alibaba Group • Conversational searchਸ ਤ೧ ConvQAܳ open retrieval settingਵ۽ ഛೞח Ѫ ਃ োҳ ਃ
ѐਃ ѐਃ • Conversational search information retrieval Ҿӓੋ ݾী ೞա
• ୭Ӕ োҳٜ conversational searchܳ response rankingҗ conversational question answering۽ ೧Ѿ • ױࣽ ߸ਸ য candidate setীࢲ ҊܰѢա য passageীࢲ spanਸ ࢶఖ • ח conversational searchীࢲ retrieval ӝୡੋ ഝਸ ޖदೞח ߑध • ࠄ ֤ޙ open-retrieval conversational question answering(ORConvQA) settingਸ ઁউೞৈ ޙઁܳ ೧Ѿ
ѐਃ ѐਃ • ORConvQAী ೠ োҳܳ ਤ೧ OR-QuAC ؘఠ ࣇਸ
ٜ݅ਵݴ ORConvQAܳ ਤೠ end-to-end दझమਸ ҳ୷ೞݴ ےझನݠ ӝ߈ retriever, reranker ৬ reader ١ਸ ನೣ • OR-QuACܳ ࢚ਵ۽ ೠ ֤ޙ प learnable retriever ਃࢿਸ ૐݺ • ژೠ ݽٚ दझమ ҳࢿ ਃࣗ(retriever, reranker ৬ reader)ীࢲ history modelingਸ ࢎਊೞݶ दझమ ѱ ѐࢶ ؼ ࣻ ਸ ࠁ
Dataset Open-Retrieval Conversational Question Answering
ORConvQA? Dataset • conversational search systemsਸ ҳ୷ೞӝ ਤೠ ୶о ױ҅۽ࢲ
߸ਸ Ҋܰ ӝ ী retrieve evidenceܳ large collection۽ ࠗఠ Ѩ࢝ 1. ࠁܳ ҳೞח ചܳ ઁҕ(information seeker৬ information provider)৬ ೞח QuAC dataset 2. QuAC ޙਸ context-independentೞѱ द ࢿೠ CANARD dataset 3. Wikipedia passage
Dataset
CANARD? Dataset • QuAC dialogsח self-containedೞ ঋח ড חؘ ח
ࠛ৮ೠ ୡӝ ޙਵ۽ ੋ೧ ߊࢤ • ܳ ٜয seekerীѱ a Chinese polymathic scientistੋ Zhang Hengী ೧ ߓۄҊ ೮חؘ ޙ "җҗ ӝࣿҗ যڃ ҙ ҅о णפө?” • ۞ೠ ࠛౠೞҊ ݽഐೠ ୡӝ ޙ ചܳ ೧ࢳೞӝ য۵ѱ ೞӝ ٸޙী ҕѐ Ѩ࢝ ജ҃ীࢲ ޙઁܳ ঠӝ • CANARD ؘఠ ࣁীࢲ ઁҕೞח context-independent rewritesਵ۽ ೞৈ ޙઁܳ ೧Ѿ, Ӓۢ "Zhang Heng җ ӝ ࣿҗ যڃ ҙ҅о णפө?"۽ ޙ
CANARD? Dataset • ߣ૩ ޙী ೧ࢲ݅ Үܳ ࣻ೯ೞݶ ച
ղীࢲ history dependenciesਸ Ӓ۽ ਬೞݶࢲ ചо self-contained • QuAC test set ҕѐغয ঋӝ ٸޙী QuAC dev setਸ ਊೞৈ CANARD test setਸ ݅ٞ • ژೠ QuAC train set 10%ܳ dev۽ ഝਊ. • CANARDী হח QuAC ޙ ತӝ೮ਵݴ ܳ ਊೠ ࢤ ؘఠ ੋ OR-QuAC ؘఠ ా҅ח җ э.
Model Open-Retrieval Conversational Question Answering
ݽ؛ Retriever, Reranker, Reader۽ ա Model
ݽ؛ Retriever, Reranker, Reader۽ ա Model
Passage Retriever Dataset • Passage Encoder • Question Encoder •
Retrieval Score
Retrieval score ӝળਵ۽ ࢚ਤ top-Kѐ ޙࢲܳ rerank৬ reader۽ ׳ Model
ݽ؛ Retriever, Reranker, Reader۽ ա Model
Reranker& Reader Encoding Dataset • Input • Contextualized Representations •
sequence representation
Reranker& Reader Dataset • Sequence Representation • Reranker (W_rr is
vector) • Reader (span prediction)
Training Open-Retrieval Conversational Question Answering
Retriever pretraining Training • retrieval scores for the batch •
to maximize the probability of the gold passage for each question • Pretraining loss Pretraning റী passage encoderח offlineਵ۽ ك. Faissܳ ࢎਊ೧ࢲ Ѿҗܳ ࡳই১.
Concurrent Learning Training • Retriever loss • Reranker loss •
Reader loss
Inference Training • Retrieval Ѿҗ Top-K ޙࢲܳ ݽف ੋಌ۠झ ೞৈ
п ޙࢲ߹ spanਸ ஏ • Retriever loss + Reranker loss + Reader lossо ઁੌ ޙࢲ spanਸ ୭ઙ ਵ۽ ஏ
RESULTS Open-Retrieval Conversational Question Answering
Competing Method RESULTS • DrQA : TF-IDF + RNN based
reader • BERTserini : BM25 + BERT reader • ORConvQA without history : our method + window size 0 • ORConvQA : our method • Evaluation Metric : word level F1, human equivalence score (HEQ), Mean Reciprocal Rank(MRR), Recall
DrQA < BERTserini < Ours w/o hist < Ours RESULTS
Ablation study RESULTS
History windows size ઑ RESULTS
хࢎפ✌ ୶о ޙ ژח ҾӘೠ ݶ ઁٚ ইې োۅ۽
োۅ ࣁਃ! ࢲ࢚ (ܻࢲ ࢎ౭झ, ೝಯ)
[email protected]
Linked in. @pingpong