Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What Can Neural Networks Reason About?
Search
Scatter Lab Inc.
May 29, 2020
Research
0
2.2k
What Can Neural Networks Reason About?
Scatter Lab Inc.
May 29, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.8k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4.1k
Adversarial Filters of Dataset Biases
scatterlab
0
2.2k
Sparse, Dense, and Attentional Representations for Text Retrieval
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
Open-Retrieval Conversational Question Answering
scatterlab
0
2.3k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
単施設でできる臨床研究の考え方
shuntaros
0
2.7k
EOGS: Gaussian Splatting for Efficient Satellite Image Photogrammetry
satai
4
520
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
時系列データに対する解釈可能な 決定木クラスタリング
mickey_kubo
2
940
Type Theory as a Formal Basis of Natural Language Semantics
daikimatsuoka
1
290
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
6
4.8k
Delta Airlines® Customer Care in the U.S.: How to Reach Them Now
bookingcomcustomersupportusa
0
110
RHO-1: Not All Tokens Are What You Need
sansan_randd
1
170
不確実性下における目的と手段の統合的探索に向けた連続腕バンディットの応用 / iot70_gp_rff_mab
monochromegane
2
170
AWSで実現した大規模日本語VLM学習用データセット "MOMIJI" 構築パイプライン/buiding-momiji
studio_graph
2
520
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
170
2025年度人工知能学会全国大会チュートリアル講演「深層基盤モデルの数理」
taiji_suzuki
25
18k
Featured
See All Featured
A better future with KSS
kneath
239
17k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
A Modern Web Designer's Workflow
chriscoyier
696
190k
The Pragmatic Product Professional
lauravandoore
36
6.9k
What’s in a name? Adding method to the madness
productmarketing
PRO
23
3.7k
A designer walks into a library…
pauljervisheath
207
24k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Producing Creativity
orderedlist
PRO
347
40k
Writing Fast Ruby
sferik
628
62k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Intergalactic Javascript Robots from Outer Space
tanoku
272
27k
Transcript
8IBUDBOOFVSBMOFUXPSL SFBTPOBCPVU ҳ࢚ળ .-4DJFOUJTU 1JOHQPOH
ݾର ݾର • Introduction: Reasoning • Algorithmic Alignment • Conclusion
*OUSPEVDUJPO3FBTPOJOH
8IBUJT3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • “୶ܻ”
8IBUJT3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ୶ܻ: ঌҊ ח Ѫਵ۽ࠗఠ ঌ ޅೞח Ѫਸ
ࢎҊೣ • ীಘ ܻী যਃ -> ܻח یझ ࣻبীਃ -> ীಘ যו աۄী ਸө? • ࠁܳ ਸ ٸ, Ӓ ࠁ۽ࠗఠ ҙೞ ޅೠ Ѫী ೠ ࢜۽ ࠁܳ ب೧ղח স
8IBUJT3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ࠁܳ ਸ ٸ, Ӓ ࠁ۽ࠗఠ ҙೞ ޅೠ
Ѫী ೠ ࢜۽ ࠁܳ ب೧ղח স • न҃ݎ ୶ܻ ޙઁ: ࠁ/ࣁ࢚ਸ ҳઑചೞҊ Ӓ ҳઑ۽ࠗఠ Ѿҗܳ ஏೞب۾ णदఇ • GNN, Neural Symbolic Programs (Semantic Parsing), Deep Sets
%FGJOJUJPOPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ޛ s ∈ Sо যࢲ п
sܳ Xۄח ߭ఠ۽ അೡ ࣻ Ҋ о • ࢚ട {S1, S2, S3, …} ী ೧ࢲ ۄ߰ {y1, y2, y3, …} о ਸ ٸ • ࠁ ޅೠ ࢚ട Sী ೠ ۄ߰ yܳ بೞח ೣࣻ y=g(S)ܳ ח Ѫ ݾ
4USVDUVSFTGPS3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • Deep Sets • S = {ࡈр ҕ,
ۆ ҕ, ֢ۆ ҕ} ۄҊ о೧ࠁݶ, • ࢎۈ ੑীࢲח ࣽࢲо ࢚ҙ হ {ࡈр ҕ, ۆ ҕ, ֢ۆ ҕ} = {ۆ ҕ, ֢ۆ ҕ, ࡈр ҕ} • Permutation Invariant ೞѱ ೣࣻ gܳ ࢸ҅ೠ Ѫ Deep set • য۰ਕ ࠁ݅ Ӓր MLP MLPۄҊ ࢤп • যڃ ࣽࢲ۽ ৬ب ࢚ҙ হ
4USVDUVSFTGPS3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • GNN (Graph Neural Network) • Aggregate৬ Concatܳ
ഝਊೞৈ Graph ҳઑܳ Networkܳ അ
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ??? • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ??? • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ??? • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ ୶ܻ ޙઁܳ դب৬ ౠী ٮۄࢲ ֎
о۽ ࠙ܨೣ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) ز ࢎী ݻ ѐ ա? Ҋনی ѐী যڃ Ѫ ݆ա? • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) о ݣܻ ڄযઉ ח ޛ ह যڃ ࢝ӭੋо? • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) ೖࠁա, ઁੌ ૣ ӡ ӝ • NP-Hard Problem: ࠺Ѿ ౚ݂ӝ҅о ೦दрী ಽ ࣻ ח ޙઁܳ ೧ ޙઁٜ۽ ೦ दрী ജਗೡ ࣻ ח • द) য ী ೧ࢲ Ӓ 0غח ࠗ࠙ ਸ ਸ ࣻ ਸө?
,JOEPG3FBTPOJOH *OUSPEVDUJPO3FBTPOJOH • ٜ п ޙઁٜী ೧ࢲ যڃ न҃ݎ ҳઑ۽
ಽ ࣻ ח ೞҊ ೞ • ా҅ ਃড (Summary Statistics): য ੑ۱ਸ ‘ࣁח’ ޙઁ • द) GNNҗ Deep Setਵ۽ח ੜ ಽ ࣻ ݅, MLP۽ח ಽӝ য۰ • ҙ҅ ࢲৌ (Relational Argmax): য ੑ۱ীࢲ ࢚ ҙ҅ܳ ٮח ޙઁ • द) GNNਵ۽ח ಽ ࣻ ݅, Deep Setਵ۽ח ಽӝ য۰ • ز ۽Ӓې߁ (Dynamic Programming): Ѿҗܳ ೞݴ ಹח ޙઁ • द) GNNਵ۽ ಽ ࣻ • NP-Hard Problem: ࠺Ѿ ౚ݂ӝ҅о ೦दрী ಽ ࣻ ח ޙઁܳ ೧ ޙઁٜ۽ ೦ दрী ജਗೡ ࣻ ח • द) Exhaustive Searchо ਃೣ
"MHPSJUIN"MJHONFOU
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ৬ Ӓ ޙઁܳ ಹח न҃ݎ ҳઑܳ о೧ࠁӝ
• ݅ডী ޙઁ ҳઑܳ न҃ݎ ҳઑী दఆ ࣻ ݶ?
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙ ਸ ઁೣ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙ ਸ ઁೣ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙਸ ਸ ઁೣ •
೧ࢳ: • ઑѤਸ ݅ೞח ޙઁח GNNਵ۽ दఆ ࣻ • Ӓ ޙઁী աఋաח ޛח ୭ Nѐө݅ оמೞҊ, • Ӓ ޙઁ ޛ ࣽࢲח ޙઁܳ ಹחؘ ޖҙೞ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙਸ ਸ ઁೣ •
೧ࢳ: • ઑѤਸ ݅ೞח ޙઁח GNNਵ۽ दఆ ࣻ • ӒܻҊ GNN MLP۽ दఆ ࣻ
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ ಽ ҙীࢲ ֤ޙਸ ਸ ઁೣ •
೧ࢳ: • ઑѤਸ ݅ೞח ޙઁח GNNਵ۽ दఆ ࣻ • ӒܻҊ GNN MLP۽ दఆ ࣻ • ޙઁ: “ޙઁ ण” ҃ب Ӓۡө???
4USVDUVSF$PNQMFYJUZPG1SPCMFN "MHPSJUINJD"MJHONFOU • ޙઁ : ޙઁ णী ೧ࢲب Ӓۡө? •
೧ࠁݶ MLPח ੜ ޅ ߓח Ѫ э: ҳઑਵ۽ ޙઁܳ ୶࢚ചೞח מ۱ ࠗ೧ࢲ • GNN п ױ҅ܳ ߓ ࣻ ݅, MLPۄݶ ܖ Ѿҗޛਸ ೞա۽ ߓਕঠ ೣ
1"$-FBSOBCJMJUZBOE"MJHONFOU "MHPSJUINJD"MJHONFOU • Probably approximately correct learning (Ѣ ഛೠ ण)
• ੑ۱җ ۱हਸ ࢠ݂೧ࢲ णೞח ঌҊ્ܻਸ ࢤп೧ࠁݶ • Probably: ֫ ഛܫ۽ • Approximately Correct: ݽ؛ ী۞о Threshold ݅ੌѢ
1"$-FBSOBCJMJUZ "MHPSJUINJD"MJHONFOU • Probably approximately correct learning (Ѣ ഛೠ ण)
• ೧ࢳ: • ܻ ݽ؛ ࢠ݂ਸ ా೧ࢲ णदఆ ࣻ Ҋ о೧ࠁ (PAC ઑѤ) • Ӓ۞ݶ ী۞بܳ ઁೠೞӝ ਤ೧ࢲח ݆ ࡳইঠ ೠ (୭ࣗ M ݅ఀ ࠂب۽ ࡳইঠೣ)
1"$-FBSOBCJMJUZ "MHPSJUINJD"MJHONFOU • Probably approximately correct learning (Ѣ ഛೠ ण)
• ؊ ए ೧ࢳ: • ࢠ݂ਵ۽ णदఆ ٸ, ࢿמ ֫۰ݶ ݆ ࡳইঠೠ!
1"$-FBSOBCJMJUZ&YBNQMF "MHPSJUINJD"MJHONFOU • MLPח ݽٚ ࢎѾ җਸ ೞա ܖ۽ рೡ
ࣻ ߆ী হਵ۽
1"$-FBSOBCJMJUZ&YBNQMF "MHPSJUINJD"MJHONFOU • MLPח ݽٚ ࢎѾ җਸ ೞա ܖ۽ рೡ
ࣻ ߆ী হਵ۽ • ೧ࢳ: • MLP۽ ޙઁܳ ಽѱ दః۰ݶ • ୭ࣗೠ Layer ӝ ী ೧ ੑ۱ ରਗ ӝ ݅ఀ Ѣٟઁғೠ Ѫ • ӒѪਸ فߣ૩ Layer ӝী ೧ ғೠ Ѫ • ݅ఀ ࢠ݂೧ঠ णदఆ ࣻ ਸ Ѫ
1"$-FBSOBCJMJUZBOE"MJHONFOU "MHPSJUINJD"MJHONFOU • ݽ؛ PAC ള۲ оמ ઑѤਸ ݅ೠݶ
Alignment ܳ ࣻधਵ۽ ॶ ࣻ • ೧ࢳ: • ޙઁী ೧ࢲ Ӓ ޙઁܳ f1, f2, f3,..ਵ۽ ଂѓ ࣻ Ҋ оೞҊ • Ӓ ଂѐ ٜࠗ࠙ਸ пп न҃ݎਵ۽ दఆ ࣻ Ҋ оೞݶ • Alignment ػח Ѫ • пп ݽ؛ਸ ള۲दఆ ٸ, ӝઓী Mѐ ࡳ Ѫࠁ ѱ ࡳইب غח ҃
1"$-FBSOBCJMJUZBOE"MJHONFOU "MHPSJUINJD"MJHONFOU • ݽ؛ PAC ള۲ оמ ઑѤਸ ݅ೠݶ
Alignment ܳ ࣻधਵ۽ ॶ ࣻ • ؊ ए ೧ࢳ: • য۰ ޙઁܳ ए ࣁࠗ ޙઁ۽ ଂѐࢲ णदௌਸ ٸ, • Ӓ ए ࣁࠗ ޙઁ пп ؘఠ۽ب ੜ ߓ ࣻ ਵݶ જѷ!
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Alignmentܳ ੜ ೡ ࣻ ח ݽ؛ ੜ
ߓ ࣻ • ઑѤਸ ݅ೠח о ೞীࢲ….
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Alignmentܳ ੜ ೡ ࣻ ח ݽ؛ ੜ
ߓ ࣻ • ઑѤਸ ݅ೠח о ೞীࢲ….
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Alignmentܳ ੜ ೡ ࣻ ח ݽ؛ ੜ
ߓ ࣻ • ппਸ ੜ ଂѐࢲ ߓח স ੜ ഛ݀ػݶ Ӓۧѱ ػח ܻࣗ • ցޖ োೠ ݈ੋ٠ • ܻ ҙীࢲ BERTо MLP ա LSTM ࠁ ੜೞח ਬח? • BERT ҳઑо ޙ ਫ਼ੋ ҳઑܳ ؊ Generalization ਸ ੜ ೮ӝ ٸޙ
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Generalization ਸ ੜ ޅೞח ݽ؛ য۰ ޙઁܳ
णೞӝ য۰ • ࣘغѱ ݈ೞݶ ݽ؛ ࠂبী ٮۄ Ӓ ޙઁܳ ಽ “ल” ࠁੋח Ѫ • п ޙઁী ೠ ࢿמ
#FUUFS"MJHONFOU#FUUFS(FOFSBMJ[BUJPO "MHPSJUINJD"MJHONFOU • Generalization ਸ ੜ ޅೞח ݽ؛ য۰ ޙઁܳ
णೞӝ য۰ • ࣘغѱ ݈ೞݶ ݽ؛ ࠂبী ٮۄ Ӓ ޙઁܳ ಽ “ल” ࠁੋח Ѫ • Monster Trainer (Path Searching) ޙઁী ೠ п ݽ؛ ࢿמ
$PODMVTJPO
$PODMVTJPO $PODMVTJPO • যڃ न҃ݎ ݽ؛ਸ ഝਊ೧ࢲ যڃ ޙઁী ೧ࢲ
ಽ ٸ • Ӓ ݽ؛ ҳઑо ޙઁ ࢲࢎ ҳઑܳ ನҚೡ ࣻ যঠ ೣ • ݅ড Ӓۧ ঋݶ ই ݆ ࢠ ਃೣ = ݽ؛ ޙઁܳ ੌ߈ചೡ ࣻ হ • ࠂೠ ݽ؛ ԙ ੜ ಽח ঋ݅, рױೠ ݽ؛ ಽӝ য۰ • ܻীѱ ח दࢎ • औѱ ߓ ݽ؛, рױೠ ഋక۽ ҳࢿػ ݽ؛ য ޑೣਸ ੜ աఋյ ࣻ ਸө? • അ BERT ҳઑח ցޖ ࠂೠ Ѫ ইקө?