Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sparse, Dense, and Attentional Representations ...
Search
Scatter Lab Inc.
August 28, 2020
Research
0
2.3k
Sparse, Dense, and Attentional Representations for Text Retrieval
Scatter Lab Inc.
August 28, 2020
Tweet
Share
More Decks by Scatter Lab Inc.
See All by Scatter Lab Inc.
zeta introduction
scatterlab
0
1.8k
SimCLR: A Simple Framework for Contrastive Learning of Visual Representations
scatterlab
0
4.3k
Adversarial Filters of Dataset Biases
scatterlab
0
2.3k
Weight Poisoning Attacks on Pre-trained Models
scatterlab
0
2.2k
Approximate Nearest Neighbor Negative Contrastive Learning for Dense Text Retrieval
scatterlab
0
2.5k
Beyond Accuracy: Behavioral Testing of NLP Models with CheckList
scatterlab
0
2.3k
Open-Retrieval Conversational Question Answering
scatterlab
0
2.3k
What Can Neural Networks Reason About?
scatterlab
0
2.3k
Exploring the Limits of Transfer Learning with Unified Text-to-Text Transformer
scatterlab
0
2.2k
Other Decks in Research
See All in Research
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
270
POI: Proof of Identity
katsyoshi
0
140
音声感情認識技術の進展と展望
nagase
0
470
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
100
LiDARセキュリティ最前線(2025年)
kentaroy47
0
130
一般道の交通量減少と速度低下についての全国分析と熊本市におけるケーススタディ(20251122 土木計画学研究発表会)
trafficbrain
0
160
[IBIS 2025] 深層基盤モデルのための強化学習驚きから理論にもとづく納得へ
akifumi_wachi
19
9.6k
存立危機事態の再検討
jimboken
0
240
Remote sensing × Multi-modal meta survey
satai
4
710
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
Featured
See All Featured
Abbi's Birthday
coloredviolet
1
4.8k
RailsConf 2023
tenderlove
30
1.3k
Utilizing Notion as your number one productivity tool
mfonobong
3
220
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
130
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
49
9.9k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
740
Color Theory Basics | Prateek | Gurzu
gurzu
0
200
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
70
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
170
Mind Mapping
helmedeiros
PRO
0
88
Discover your Explorer Soul
emna__ayadi
2
1.1k
Transcript
4QBSTF %FOTFBOE"UUFOUJPOBM 3FQSFTFOUBUJPOGPS5FYU3FUSJFWBM ҳ࢚ળ .-4DJFOUJTU
ݾର ݾର • Introduction • Analyzing Dual Encoder Retrieval •
Rank Preservation over Dense Model (Projection) • Rank Preservation over Sparse Model • Rank Preservation over Attention Model • Experiment & Analysis
*OUSPEVDUJPO
6TJOH&ODPEFSTPWFS3FUSJFWBM5BTL *OUSPEVDUJPO • য ௪ܻী ೧ࢲ ҙ۲ ח ޙױਸ যڌѱ
Ҏۄյ ࣻ ਸө? • TF-IDF ١ Sparse Modelਸ ഝਊೞৈ 1ରੋ റࠁ ޙࢲٜਸ Ҏۄն • ௪ܻ৬ п റࠁ ޙࢲٜਸ Dense Encoderܳ క -> ࢎ࢚ೠ ߭ఠܳ ഝਊೞৈ ਸ ୶ Contextualized Sparse Representation with Rectified N-Gram Attention for Open-Domain Question Answering, Lee et al., ICLR 2019
#J&ODPEFSGPS3FUSJFWBM *OUSPEVDUJPO • Cross-Encoder vs Bi-Encoder (Dual Encoder) • Cross-Encoder:
௪ܻ৬ റࠁܳ ೠ ੑ۱ਵ۽ ޘযࢲ ֍যࢲ ࠙ܨೞח ߑध • Bi-Encoder: ௪ܻ৬ റࠁܳ пп ܲ ੋ؊۽ ࢎ࢚ೠ റ ਬࢎبܳ ҅ೞח ߑध Poly-encoders: architectures and pre-training strategies for fast and accurate multi-sentence scoring Humeau et al., ICLR 2020
&GGFDUJWFOFTTPG%FOTJUZ *OUSPEVDUJPO • ੌ߈ਵ۽ Denseೠ ݽ؛ Sparseೠ ݽ؛ࠁ ࢿמ ؘ֫…
• ӟ ޙী ೧ࢲח ߈٘द Ӓۧ ঋਸ ࣻب ח അ࢚ਸ ߊѼ • ৵ Ӓۡө? • ରਗ ই ޙ ܳ ࣻਊೞח מ۱(Capacity) ࠗ೧ࢲ? • ޙਸ ੌ߈ചೞח מ۱(Generality)о ࠗ೧ࢲ?
&GGFDUJWFOFTTPG%FOTJUZ *OUSPEVDUJPO • ࠄ ֤ޙ ೨ब • Sparse Model ࢿמਸ
࢚ഥೞ۰ݶ Dense Model ରਗ ӝо ழঠ ೠ • ਃೠ ରਗ ӝח ޙࢲ ӡ৬ যൃ ंী ೧ Ѿػ • ই۞ Sparse Model, Random Projection, Attention Model (Cross Enc)ਸ ࠺Үೡ ٸ • Random Projection ରਗীࢲب ࢚ ࣻೠ ࢿמਸ ࠁݴ, • Attention Model ҃ীח ਃ ରਗ ӝח ਵա ҅ ݆ ਃೞ
"OBMZ[JOH%VBM&ODPEFS3FUSJFWBM
• ௪ܻ৬ ޙࢲী ೠ 1-hot അ q,d৬ ܳ ਤೠ
Encoder ೣࣻ fо Ҋ о • ਬࢎب ӝ߈ਵ۽ ࣻܳ ݫӟҊ о: <q, d>, <f(q), f(d)> .BUIFNBUJDBM3FQGPS&ODPEFST "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM tਘu t٣ૉפu tחu tઁu tకযu tլu R j G R &ODPEFS -45. #&35 j tਘu tੌۄযझu t٣ૉפu uחu tu E j G E &ODPEFS -45. #&35 j R E G R G E
3BOL1SFTFSWBUJPOPWFS%FOTF.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • d1, d2ী ೧ࢲ “ࣽਤܳ ࠁઓೞח” Encoder
ೣࣻ fח ਸ ݅ೣ • d1, d2ী ೧ࢲ “ε-ഛೠ” Encoder ೣࣻח ਸ ݅ೣ ⟨q, d1 ⟩ > ⟨q, d2 ⟩ ⇒ ⟨f(q), f(d1 )⟩ > ⟨f(q), f(d2 )⟩ |∥f(q) − f(d)∥2 − ∥q − d∥2 | ≤ ϵ ⋅ ∥q − d∥2
3BOL1SFTFSWBUJPOPWFS%FOTF.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • যڃ ੋ؊о যൃ ࢿ࠙ ӝ ߈࠺۹ೞח
য়ରਯਸ оݶ Ӓ ੋ؊ח ࣽਤܳ ࠁೠ.
3BOL1SFTFSWBUJPOPWFS%FOTF.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • যڃ ੋ؊о যൃ ࢿ࠙ ӝ ߈࠺۹ೞח
য়ରਯਸ оݶ Ӓ ੋ؊ח ࣽਤܳ ࠁೠ. • औѱ ݈೧ࢲ যൃо ࣻ۾, ޙࢲ-௪ܻо ݆ਸࣻ۾ જ ੋ؊ܳ ٜ݅ӝ য۰
3BOL1SFTFSWBUJPOPWFS1SPKFDUJPO "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • Projection Method: Hyperplaneਵ۽ ߭ఠܳ ࢎ࢚೧ࢲ ୷ࣗदఃח
ӝߨ • Hyperplane ӝળ ন ҳрী ח, ҳрী ח۽ ӝࣿೣ
3BOL1SFTFSWBUJPOPWFS1SPKFDUJPO "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • Encoder f with contraction mapping •
ױੌ ೯۳۽ അغח ୷ࣗ ࢎ࢚ (ੋ؊) fо যࢲ (, f(x) = Ax) nѐ ޙࢲܳ ࢎ࢚ೡٸ • Rademacher Embedding, Gaussian Embedding: п ࢿ࠙ਸ ےؒೞѱ ࢶఖغਸ ٸ • જ Aܳ ٜ݅ӝ ਤೠ ୷ࣗ ߭ఠ ӝ kח ( ) ী ߈࠺۹ೞҊ ী ࠺۹ೣ ϵ2/2 − ϵ3/3 log(n)
3BOL1SFTFSWBUJPOPWFS1SPKFDUJPO "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • Encoder f with contraction mapping •
ױੌ ೯۳۽ അغח ୷ࣗ ࢎ࢚ (ੋ؊) fо যࢲ (, f(x) = Ax) nѐ ޙࢲܳ ࢎ࢚ೡٸ • Rademacher Embedding, Gaussian Embedding: п ࢿ࠙ਸ ےؒೞѱ ࢶఖغਸ ٸ • જ Aܳ ٜ݅ӝ ਤೠ ୷ࣗ ߭ఠ ӝ kח ( ) ী ߈࠺۹ೞҊ ী ࠺۹ೣ • औѱ ݈೧ࢲ, ୷ࣗػ ରਗ ӝо যוبח ழঠೞҊ, ח ޙࢲ ࣻী ೱਸ ߉ ϵ2/2 − ϵ3/3 log(n)
3BOL1SFTFSWBUJPOPWFS4QBSTF.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • TF-IDF ݽ؛ਸ ࢤп೧ࠁӝ: ¯ qi = qi
⋅ IDFi tਘu t٣ૉפu tחu tઁu tకযu tլu R *%' q̅ tਘu t٣ૉפu j
3BOL1SFTFSWBUJPOPWFS4QBSTF.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • TF-IDF ݽ؛ਸ ࢤп೧ࠁӝ: • TF-IDF ਬࢎبח
ഋక۽ ӝࣿؼ ࣻ • BM-25 ҃ীח =BM25(q,d) ഋక۽ ӝࣿؼ ࣻ ¯ qi = qi ⋅ IDFi ⟨¯ q, d⟩ ⟨¯ q, ¯ d⟩ tਘu t٣ૉפu tחu tઁu tకযu tլu R *%' q̅ tਘu t٣ૉפu j
3BOL1SFTFSWBUJPOPWFS4QBSTF.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • ֤ী খࢲࢲ Normalized Margin Termਸ ೣ (ࣻ۾
ف ޙࢲр ରо դח ڷ) • TF-IDFܳ ୷ࣗ ࢎ࢚ ഋక۽ അೞח Aо ݶ (, ) • ࢎ࢚ য়ରਯ ী ࠺۹ೣ ¯ q = Aq, ¯ d = Ad 4exp(−k(δ2 − δ3)/4) δ(q, d1 , d2 ) = q ⋅ (d1 − d2 ) ∥q∥ ⋅ ∥d1 − d2 ∥
3BOL1SFTFSWBUJPOPWFS4QBSTF.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • ֤ী খࢲࢲ Normalized Margin Termਸ ೣ (ࣻ۾
ف ޙࢲр ରо դח ڷ) • TF-IDFܳ ୷ࣗ ࢎ࢚ ഋక۽ അೞח Aо ݶ (, ) • ࢎ࢚ য়ରਯ ী ࠺۹ೣ • औѱ ݈೧ࢲ য়ରਯਸ ۰ݶ যוب ରਗ ӝо ࠁغযঠ ೣ ¯ q = Aq, ¯ d = Ad 4exp(−k(δ2 − δ3)/4) δ(q, d1 , d2 ) = q ⋅ (d1 − d2 ) ∥q∥ ⋅ ∥d1 − d2 ∥
3BOL1SFTFSWBUJPOPWFS"UUFOUJPO.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • x = (x1, x2, …), y =
(y1, y2, …)ী ೧ࢲ cross-attentionਸ ഝਊೠ ղ җ э ӝࣿؽ
3BOL1SFTFSWBUJPOPWFS"UUFOUJPO.PEFM "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • x = (x1, x2, …), y =
(y1, y2, …)ী ೧ࢲ cross-attentionਸ ഝਊೠ ղ җ э ӝࣿؽ • औѱ ݈ೞݶ ࠁغযঠ ೞח ରਗ ӝח ௪ܻ ష ӡ ઁғী ࠺۹
3BOL1SFTFSWBUJPO 4VNNBSZ "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • যൃо ࣻ۾, ޙࢲ-௪ܻо ݆ਸࣻ۾ જ ੋ؊ܳ
ٜ݅ӝ য۰
3BOL1SFTFSWBUJPO 4VNNBSZ "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • যൃо ࣻ۾, ޙࢲ-௪ܻо ݆ਸࣻ۾ જ ੋ؊ܳ
ٜ݅ӝ য۰ • Ax ഋక۽ ରਗਸ ୷ࣗೡ ٸ, Ӓ ӝо যוبח ழঠೞҊ, ח ޙࢲ ࣻ ۽Ӓী ࠺۹ೣ
3BOL1SFTFSWBUJPO 4VNNBSZ "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • যൃо ࣻ۾, ޙࢲ-௪ܻо ݆ਸࣻ۾ જ ੋ؊ܳ
ٜ݅ӝ য۰ • Ax ഋక۽ ରਗਸ ୷ࣗೡ ٸ, Ӓ ӝо যוبח ழঠೞҊ, ח ޙࢲ ࣻ ۽Ӓী ࠺۹ೣ • TF-IDF ഋక Sparse ݽ؛ীࢲ য়ରਯਸ ۰ݶ যוب ରਗ ӝо ࠁغযঠ ೣ
3BOL1SFTFSWBUJPO 4VNNBSZ "OBMZ[JOH%VBM&ODPEFS3FUSJFWBM • যൃо ࣻ۾, ޙࢲ-௪ܻо ݆ਸࣻ۾ જ ੋ؊ܳ
ٜ݅ӝ য۰ • Ax ഋక۽ ରਗਸ ୷ࣗೡ ٸ, Ӓ ӝо যוبח ழঠೞҊ, ח ޙࢲ ࣻ ۽Ӓী ࠺۹ೣ • TF-IDF ഋక Sparse ݽ؛ীࢲ য়ରਯਸ ۰ݶ যוب ରਗ ӝо ࠁغযঠ ೣ • Cross-Attentionਸ ഝਊೡ ٸ ਃೠ ରਗ ӝח ௪ܻ ష ӡ ઁғী ࠺۹ೣ
&YQFSJNFOU
&YQFSJNFOU*$5PWFS8JLJQFEJB &YQFSJNFOU • ߑߨ: Inverse Cloze Test • ޙױਸ
ৈ۞ ࠗ࠙ਵ۽ ա׃ • ೞա ࠗ࠙ਸ Query۽, աݠ ࠗ࠙ਸ Document۽ • ࠄ ֤ޙীࢲח Wikipediaܳ ഝਊೞৈ 1M ݅ఀ ௪ܻܳ ࢤࢿೣ • Rankingҗ Retrieval ل Recallਸ ஏೣ • ઑҵ: • Cross-Attention, Sum-of-max • Dual-Encoder BERT • Multi-Vecter BERT • Sparse Model (BM25)
&YQFSJNFOU*$5PWFS8JLJQFEJB &YQFSJNFOU • प Ѿҗ • ߬٬ ӝо ਸࣻ۾ ࢿמ
ڄযݴ, Retrievalীࢲ ف٘۞ѱ աఋթ • Retrieval ҃ח BM25৬ Multi-Vectorо ࢤпࠁ ੜೞח ಞ
&YQFSJNFOU0QFO%PNBJO2" &YQFSJNFOU • ߑߨ: Natural Questions Dataset • पઁ Wikipedia
ղਊਸ ޛযࠁח हਵ۽ ҳࢿ • 87,925ѐ۽ ള۲दఃҊ 3,610ѐী ೧ࢲ पೣ • ઑҵ: • Cross-Attention, Sum-of-max • Dual-Encoder BERT, Hybrid Dual-Encoder Bert (Sparse৬ Dense ࢶഋ) • Multi-Vecter BERT • Sparse Model (BM25)
&YQFSJNFOU0QFO%PNBJO2" &YQFSJNFOU • प Ѿҗ • ৈ ߬٬ ӝо
ݽ؛ ࢿמ ڄয • पઁ ࢎۈ ޙ ҃, BM25ח ੜ ೞ ޅೣ = ੌ߈ച מ۱ ࠗ • ই۞ ICTী ࠺೧ ߬٬ ӝࠁ ߑߨۿ ରо ഻ঁ ਃೠ Ѫਸ ࠅ ࣻ
&YQFSJNFOU4IPSU"OTXFS&YBDU.BUDI &YQFSJNFOU • ߑߨ: Natural Questions Dataset • Experiment 2৬
زੌೞغ, ߸ ഛ ੌೞח ҃ܳ ஏ • ઑҵ: • DE-BERT, Hybrid-BERT, Multi-BERT (Best Dense) • Sparse Model (BM25) • प Ѿҗ: • Hybrid ݽ؛ ࢿמ જਵݴ 200ѐ షਸ ࠌਸ ٸ જ
4VNNBSZ*OUVJUJPO &YQFSJNFOU • Summary • ߬٬ӝо ਸࣻ۾ ࢿמ ڄযݴ, ੌ߈ചо
ਃҳغ ঋח ؘఠ (ICT) ীࢲ ف٘۞ • Sparse ݽ؛ ҃ ੌ߈ചо ਃҳغח ؘఠ (Open-Domain QA)ীࢲח ࢿמ ڄয • Hybrid ݽ؛ ਵ۽ ֫ ࢿמਸ ࠁৈષ = নଃ ਸ ஂೡ ࣻ ח ഋక • Intuition • അ BM25 ߑߨࠁ ߬٬ ࢲо જਸ Ѫਵ۽ ࢚ؽ. • ܻ ؘఠח ੌ߈ചܳ ݆ ਃҳೞӝ ٸޙী Hybridܳ ॳח Ѫ ٙ ঋਸ ٠