Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習実用化失敗黙示録
Search
shibuiwilliam
April 20, 2022
Programming
0
160
機械学習実用化失敗黙示録
機械学習実用化の失敗経験談
shibuiwilliam
April 20, 2022
Tweet
Share
More Decks by shibuiwilliam
See All by shibuiwilliam
生成AIのためのデータ収集とデータエンジニアリング
shibuiwilliam
3
370
LLMで推論するライブラリを整理する
shibuiwilliam
5
1.1k
生成AIの研究開発を事業につなげる データ、仕組み、コミュニケーション
shibuiwilliam
1
65
デプロイして本番システムで使うことから考えるAI
shibuiwilliam
2
570
今日からRAGを 始めることを考える
shibuiwilliam
2
1.6k
2024年生成AI新年会登壇資料
shibuiwilliam
0
300
Creative as Software Engineering
shibuiwilliam
2
620
Kubernetesクラスターを引き継ぐ技術
shibuiwilliam
3
310
機械学習システム構築実践ガイド
shibuiwilliam
1
870
Other Decks in Programming
See All in Programming
Semantic Kernelのネイティブプラグインで知識拡張をしてみる
tomokusaba
0
180
【re:Growth 2024】 Aurora DSQL をちゃんと話します!
maroon1st
0
770
創造的活動から切り拓く新たなキャリア 好きから始めてみる夜勤オペレーターからSREへの転身
yjszk
1
130
menu基盤チームによるGoogle Cloudの活用事例~Application Integration, Cloud Tasks編~
yoshifumi_ishikura
0
110
第5回日本眼科AI学会総会_AIコンテスト_3位解法
neilsaw
0
170
rails statsで大解剖 🔍 “B/43流” のRailsの育て方を歴史とともに振り返ります
shoheimitani
2
930
Refactor your code - refactor yourself
xosofox
1
260
なまけものオバケたち -PHP 8.4 に入った新機能の紹介-
tanakahisateru
1
120
数十万行のプロジェクトを Scala 2から3に完全移行した
xuwei_k
0
270
今からはじめるAndroidアプリ開発 2024 / DevFest 2024
star_zero
0
1k
RWC 2024 DICOM & ISO/IEC 2022
m_seki
0
210
The Efficiency Paradox and How to Save Yourself and the World
hollycummins
1
440
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Side Projects
sachag
452
42k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.9k
Building a Scalable Design System with Sketch
lauravandoore
460
33k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
Build your cross-platform service in a week with App Engine
jlugia
229
18k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
28
9.1k
Rebuilding a faster, lazier Slack
samanthasiow
79
8.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
Transcript
機械学習実用化失敗黙示録 2022/04/20 しぶい
自己紹介 shibui yusuke • いろいろ → Launchable(いまここ) • MLOpsとかいろいろエンジニア •
もともとクラウド基盤の開発、運用 • ここ6年くらいMLOpsとバックエンドとインフラとたまに データ分析とAndroidで仕事 • Github: @shibuiwilliam • FB: yusuke.shibui • Meety: https://meety.net/matches/OPJgijxiEMHE • 最近の趣味:本の執筆と副業と ARとネコ cat : 0.55 dog: 0.45 human : 0.70 gorilla : 0.30 物体検知 2
MLOps勉強会を毎月開催してます! https://mlops.connpass.com/
ワシの失敗談は百八式まであるぞ • 成功の裏には多くの失敗が存在する。 • 成功しなくても多くの失敗は存在する。 • 機械学習の実用化関係の仕事を続けてきて犯した大小の失敗のうち、 代表的な1個を説明します。
機械学習を実用化するためのエンジニアリング 学習 コード 学習 データ 学習 評価 モデル レポート 推論
コード CI テスト データ 評価 コード CD システム A A/B テスト システム B 負荷 試験 ログ 収集 評価 データ ユニット テスト ユニット テスト 機械学習エンジニアが得意 ソフトウェアエンジニアが得意 SREが得意
機械学習を実用化するためのエンジニアリング 学習 コード 学習 データ 学習 評価 モデル レポート 推論
コード CI テスト データ 評価 コード CD システム A A/B テスト システム B 負荷 試験 ログ 収集 評価 データ ユニット テスト ユニット テスト 機械学習エンジニアが得意 ソフトウェアエンジニアが得意 SREが得意 機械学習のエンジニアリングには 機械学習の知識が必要
0->1 フェーズのよくある失敗 全部できるスーパーエンジニアが全部作る ・・・けど作るだけで終わる 機械学習を実用化するためのエンジニアリング 学習 コード 学習 データ 学習
評価 モデル レポート 推論 コード CI テスト データ 評価 コード CD システム A A/B テスト システム B 負荷 試験 ログ 収集 評価 データ ユニット テスト ユニット テスト 機械学習エンジニアが得意 ソフトウェアエンジニアが得意 SREが得意
機械学習黎明期に謎の機械学習システムが出来上がる コード管理 DWH CI CRD 学習 パイプライン ビルド パイプライン マイクロサービス
CRD デプロイ パイプライン CRD 学習 クラスター サービス クラスター cron リソース コントローラ
チームメンバー モチベーション 俺は0->1が得意! 新しいプロダクトを考 えたよ♪ どうにか運用せねば ・・・ 作った人の尻拭いは 嫌だ。無駄に複雑で 不安定だし。
作った人 PdM EM
作り直すことのエンジニアリング • 目標を立てる:チームメンバーが技術選定して小さな変更でまともな運用を目指す ◦ 独自パイプラインCRDをマネージドサービスとサーバレスに寄せる • モチベーションを作る:作ったときに存在しなかった新しい技術を取り入れる ◦ Vertex AIやMLflowの導入
• フルスタックを目指さない:エンジニアとして今得たい技術に集中する ◦ 機械学習Kubernetesクラスターをインフラチームクラスターに移行 • 技術的負債をビジネス的に説明する:運用負荷を下げたほうが開発効率は上がる ◦ 開発vs運用工数の指標化
開発のチームワークはフェーズによって異なる 機械学習 導入開始 実用化 開発自動化 リリース 自動化 機械学習 エンジニア一人 機械学習
エンジニア複数 機械学習エンジニア + バックエンドエンジニア プロダクト別・事業別 チーム 頑張れ! 一番自由な時期! 阿吽の呼吸で わいわい楽しい ♪ 軋轢が生まれ始める コード品質 vs Jupyter 各チームの独自運用 他チームはあまり知らない スーパーエンジニア レガシー企業は 実はこのステージが多い 動いてるけどメンテナンスが 難しいことが多い バックエンドエンジニアの 支援がありがたいフェーズ 素晴らしいチームワーク!
学び • 作りたいものや作ってほしいものが、本当に作るべきものとは限らない。 • 作り直しは必ず発生する。新技術を扱ったプロダクトでは特に。 • 組織とプロダクトのフェーズによって突破志向と安定志向を使い分ける。
昨年出版した本の宣伝 • AIエンジニアのための 機械学習システムデザインパターン • 2021年5月17日発売 • https://www.amazon.co.jp/dp/4798169447/ • 機械学習よりもKubernetesとIstioに詳しくなれる一冊!
• Amazon.co.jp 情報学・情報科学部門 1位! 人工知能部門 1位! • 韓国語版も発売中! • 英語版出したい!