Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
MLOps failure(1_108)
Search
shibuiwilliam
March 17, 2022
Technology
0
120
MLOps failure(1_108)
儂のMLOps失敗談は108式まであるぞ。
shibuiwilliam
March 17, 2022
Tweet
Share
More Decks by shibuiwilliam
See All by shibuiwilliam
生成AI時代のデータ基盤
shibuiwilliam
6
4.5k
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
3
1.5k
AI人生苦節10年で会得したAIがやること_人間がやること.pdf
shibuiwilliam
1
360
LayerXのApplied R&D
shibuiwilliam
2
50
LLM時代の検索
shibuiwilliam
3
1.1k
生成AIを作るエンジニアリングと使うエンジニアリング
shibuiwilliam
2
120
AI Agentのキャッシュ、再利用、Ops
shibuiwilliam
2
140
生成AIのためのデータ収集とデータエンジニアリング
shibuiwilliam
5
700
LLMで推論するライブラリを整理する
shibuiwilliam
6
1.8k
Other Decks in Technology
See All in Technology
Shirankedo NOCで見えてきたeduroam/OpenRoaming運用ノウハウと課題 - BAKUCHIKU BANBAN #2
marokiki
0
170
E2Eテスト設計_自動化のリアル___Playwrightでの実践とMCPの試み__AIによるテスト観点作成_.pdf
findy_eventslides
1
570
【Kaigi on Rails 事後勉強会LT】MeはどうしてGirlsに? 私とRubyを繋いだRail(s)
joyfrommasara
0
210
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
2
580
『バイトル』CTOが語る! AIネイティブ世代と切り拓くモノづくり組織
dip_tech
PRO
1
110
The Cake Is a Lie... And So Is Your Login’s Accessibility
leichteckig
0
100
Escaping_the_Kraken_-_October_2025.pdf
mdalmijn
0
150
『OCI で学ぶクラウドネイティブ 実践 × 理論ガイド』 書籍概要
oracle4engineer
PRO
3
170
SREとソフトウェア開発者の合同チームはどのようにS3のコストを削減したか?
muziyoshiz
1
200
AWS Top Engineer、浮いてませんか? / As an AWS Top Engineer, Are You Out of Place?
yuj1osm
2
190
能登半島地震で見えた災害対応の課題と組織変革の重要性
ditccsugii
0
240
職種別ミートアップで社内から盛り上げる アウトプット文化の醸成と関係強化/ #DevRelKaigi
nishiuma
2
160
Featured
See All Featured
Site-Speed That Sticks
csswizardry
11
890
Making the Leap to Tech Lead
cromwellryan
135
9.6k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
The Cult of Friendly URLs
andyhume
79
6.6k
Unsuck your backbone
ammeep
671
58k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
19
1.2k
Raft: Consensus for Rubyists
vanstee
139
7.1k
A Tale of Four Properties
chriscoyier
160
23k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Speed Design
sergeychernyshev
32
1.1k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Designing for humans not robots
tammielis
254
26k
Transcript
MLOps失敗篇 (1/108) 2022/02/16 shibui
自己紹介 shibui yusuke • いろいろ → Launchable(いまここ) • MLOpsとかいろいろエンジニア •
もともとクラウド基盤の開発、運用 • ここ6年くらいMLOpsとバックエンドとインフラとたまに データ分析とAndroidで仕事 • Github: @shibuiwilliam • FB: yusuke.shibui • Meety: https://meety.net/matches/OPJgijxiEMHE • 最近の趣味:本の執筆と副業と自宅勤務改善 cat : 0.55 dog: 0.45 human : 0.70 gorilla : 0.30 物体検知 2
成功の裏には多くの失敗が存在する • 成功しなくても多くの失敗は存在する。 • 機械学習の実用化関係の仕事を続けてきて犯した大小の失敗のうち、 代表的な1個を説明します。
開発半年、切り戻し1日 • プロジェクトの目的:B2Bで顧客の社内検索システムの性能向上を実現 • 手法:ランク学習を用いて検索の並び順を最適化することを狙う ねこ 検索 ねこ 検索
開発半年、切り戻し1日 • 検索ログからデータを作成し、Pointwiseで学習 ねこ 検索 q: ねこ q: いぬ q:
いぬっぽいねこ
開発半年、切り戻し1日 • キャッシュを有効活用してパフォーマンス・チューニング ねこ 検索 ねこ 検索 検索 データ ログ
特徴量 cache Rank cache Rank <100ms
開発半年、切り戻し1日 • リリース判定とユーザインタビューで好評 ねこ 検索 ねこ 検索 LGTM
開発半年、切り戻し1日 • リリース1日でクレームの嵐 • そのまま切り戻し ねこ 検索 ねこ 検索 昨日と違う
似てるものが みつからない 新しい順 でほしい 聞いてない
開発半年、切り戻し1日 • (1/1000の)リリース判定とユーザインタビューで好評 ねこ 検索 ねこ 検索 LGTM (1/1000票)
学び • 見えるもののドラスティックな変更 >>>> 機械学習の価値 • ユーザの理解 >>>> 想定した効率化 • 日々の業務 >>>> チューニングされたシステム
ハッシュタグ#MLOpsコミュニティ 公式アカウント @MlopsJ 次回、第17回は3/23(水) 18:00-!! • マネジメント経験者による機械学習実用化チーム座談会!!! ◦ Sansan株式会社 VPoE/研究開発部部長
西場様 ◦ Citadel AI 杉山様 ◦ 藤原秀平(sfujiwara)様 ◦ Launchable 澁井(司会) • 次回もぜひご参加ください!