Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TFLite and PyTorch Mobile
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
shibuiwilliam
March 15, 2022
Technology
0
650
TFLite and PyTorch Mobile
Running TFLite and PyTorch Mobile
shibuiwilliam
March 15, 2022
Tweet
Share
More Decks by shibuiwilliam
See All by shibuiwilliam
画像生成AIについて
shibuiwilliam
0
18
2026年はチャンキングを極める!
shibuiwilliam
9
2k
R&Dチームを起ち上げる
shibuiwilliam
1
160
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
970
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
17
18k
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
2
550
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
4
1.4k
実践マルチモーダル検索!
shibuiwilliam
3
990
生成AI時代のデータ基盤
shibuiwilliam
7
5.3k
Other Decks in Technology
See All in Technology
We Built for Predictability; The Workloads Didn’t Care
stahnma
0
140
OCI Database Management サービス詳細
oracle4engineer
PRO
1
7.4k
AIエージェントを開発しよう!-AgentCore活用の勘所-
yukiogawa
0
170
プロポーザルに込める段取り八分
shoheimitani
1
290
30万人の同時アクセスに耐えたい!新サービスの盤石なリリースを支える負荷試験 / SRE Kaigi 2026
genda
4
1.3k
会社紹介資料 / Sansan Company Profile
sansan33
PRO
15
400k
小さく始めるBCP ― 多プロダクト環境で始める最初の一歩
kekke_n
1
440
Webhook best practices for rock solid and resilient deployments
glaforge
2
300
ClickHouseはどのように大規模データを活用したAIエージェントを全社展開しているのか
mikimatsumoto
0
260
What happened to RubyGems and what can we learn?
mikemcquaid
0
300
茨城の思い出を振り返る ~CDKのセキュリティを添えて~ / 20260201 Mitsutoshi Matsuo
shift_evolve
PRO
1
320
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
160
Featured
See All Featured
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
WENDY [Excerpt]
tessaabrams
9
36k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
110
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
WCS-LA-2024
lcolladotor
0
450
Building an army of robots
kneath
306
46k
The Invisible Side of Design
smashingmag
302
51k
Docker and Python
trallard
47
3.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
Transcript
TFLiteとPyTorch Mobile 2020/06/17 shibui yusuke 1
自己紹介 cat : 0.55 dog: 0.45 human : 0.70 gorilla
: 0.30 画像分類 Shibui Yusuke • メルカリ AI Team 基盤エンジニア MLエンジニア その他いろいろ • Github: @shibuiwilliam • Qiita: @cvusk • Facebook: @shibui yusuke • 最近やってること:Android、AR MLシステムデザインパターン作成中。 これにEdge AIパターンを追加したい! https://github.com/mercari/ml-system -design-pattern 2
今日のアイドル マルグレーテちゃん( ♀) 1歳 ノルウェージャンフォレストキャット 趣味は爪研ぎとゴミ箱あさり! 3
• Why Edge AI? • Tensorflow Lite & PyTorch Mobile
• Let’s Edge AI Agenda 4
Why Edge AI? • サーバサイドでAI • クライアントサイドで AI ボトル ネック
ボトル ネック 高性能 低性能 リアル タイム ・Kotlin ・Java ・Swift ・C++ ・C 情報保護 ・Python ・Python ・Python 5
AIをスマホで動かす • AIはAIだけではない。 ◦ 前処理 カメラで画像を取得し、 画像をAIで扱えるように サイズとRGBを調整して テンソル(行列)に変換する。 ◦
AI 前処理済みのテンソルにたくさんの 掛け算と足し算(積和演算)をする。 ◦ 後処理 AIの結果をスマホの画面に表示。 猫! 6 この画像に写っているものを AIで判定したい
AIをスマホで動かす前処理 • カメラで画像を取得し、画像を AIで扱えるように サイズとRGBを調整してテンソル(行列)に変換する。 0.2 0.3 0.9 0.0 0.0
0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 画像を正方形 (224*224)にリサイズ RGBのテンソル (行列)に分ける テンソルを0~1に正規化 60 90 240 0 0 10 127 195 10 92 128 195 195 161 111 161 7
AIをスマホで動かすモデル • 前処理済みのテンソルにたくさんの掛け算と足し算(積和演算)をする。 AIの実態(ロジックとパラメータの集まり)を「モデル」と呼ぶ。 0.2 0.3 0.9 0.0 0.0 0.1
0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 tench hen jay kite goose beagle collie stove lion persian siamese gown mask ski ...1000 モデル 演算中にテンソルの形状が変化していく 8
AIをスマホで動かす後処理 • AIの結果をスマホの画面に表示。 猫! tench 5% hen 2% jay 3%
kite 2% goose 10% beagle 2% collie 3% stove 1% lion 10% persian 15% siamese 10% gown 4% mask 2% ski 3% ...1000 ... 9
Google製のTensorflowをモバイルで 動かすためのライブラリ。 Android/iOS/ラズパイ/マイコン対応。 AIのモバイル対応では高性能で汎用的。 TensorFlow Lite & PyTorch Mobile スマホでAIのモデルを動かすための主なライブラリ
Facebook製のPyTorchをモバイルで 動かすためのライブラリ。 Android/iOS対応。 PyTorchは使いやすさやシンプルさから AI研究で使われることが多い。 10
Let's Edge AI ImageAnalysisでTFLiteと PyTorchMobileを実行 WorkerThreadで推論 推論結果 上位3件 ソースコードはこちら。 https://github.com/shibuiwilliam/TFLitePyTorch
11
CameraXにImageAnalysisをbind abstract class AbstractCameraXActivity : AppCompatActivity(){ @WorkerThread protected abstract fun
analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float> ~~~~省略~~~~ private fun setupCameraX() { ~~~~省略(preview)~~~~ val imageAnalysisConfig = ImageAnalysisConfig .Builder() .apply { setCallbackHandler(mBackgroundHandler) setImageReaderMode(ImageAnalysis.ImageReaderMode.ACQUIRE_LATEST_IMAGE) } .build() ~~~~次ページへ~~~~ } } TFLiteとPyTorchMobileが analyzeImage()をoverride 12
CameraXにImageAnalysisをbind abstract class AbstractCameraXActivity : AppCompatActivity(){ @WorkerThread protected abstract fun
analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float> ~~~~省略~~~~ private fun setupCameraX() { ~~~~前ページから~~~~ val imageAnalysis = ImageAnalysis(imageAnalysisConfig) imageAnalysis.analyzer = ImageAnalysis.Analyzer { image: ImageProxy?, rotationDegrees: Int -> if (image == null) return@Analyzer val result = analyzeImage(image, rotationDegrees) if (result != null) runOnUiThread(Runnable { showResult(result) }) } CameraX.bindToLifecycle(this, preview, imageAnalysis) } } 結果を画面に表示 推論して結果を取得 13
AIの開発ステップ 前処理 学習 前処理 推論 後処理 モデル 学習 サーバサイド Python
推論 クライアントサイド Kotlin/Swift モデル 変 換 14 グレー部分を TensorFlowや PyTorchがカバー
• tf.lite.TFLiteConverter ◦ TFLite向けの専用のコンバータでモデルを FlatBuffersに変換する。 ◦ 各種クライアントのTFLite InterpreterがFlatBuffersを読み込んでモデルを動かす。 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/python TensorFlow
Lite スマホで推論するためのモデル変換 スマホで推論モデルを動かすためのランタイム • org.tensorflow.lite.* ◦ チップセットへのdelegateを含めたInterpreter(推論器)を動かすためのライブラリ。 ◦ データの入出力はjava.nio.Bufferに変換、Interpreterを呼び出す。 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimenta l/support/java/src/java/org/tensorflow/lite/support 15
TensorFlow Lite Python Java (Kotlin) 16
Neural Network API (NNAPI) Androidデバイスで演算負荷の 高いAI処理を実行するための ネイティブAPI。 演算をGPUや専用チップへ移譲。 アプリ TFLite
NNAPI CPU Proc GPU 17
class TFLiteActivity : AbstractCameraXActivity() { ~~~~省略~~~~ private fun initializeTFLite(device: Constants.Device
= Constants.Device.NNAPI, numThreads: Int = 4) { val delegate = when (device) { Constants.Device.NNAPI -> NnApiDelegate() Constants.Device.GPU -> GpuDelegate() Constants.Device.CPU -> "" } if (delegate != "") tfliteOptions.addDelegate(delegate) tfliteOptions.setNumThreads(numThreads) tfliteModel = FileUtil.loadMappedFile(this, Constants.TFLITE_MOBILENET_V2_PATH) tfliteInterpreter = Interpreter(tfliteModel, tfliteOptions) ~~~~次ページへ~~~~ } } TFLiteの演算を NNAPIやGPU に移譲 既存のモデルファイルを ロード モデルを計算 グラフに変換 TFLiteの推論モデルを用意する 18
TFLiteの推論モデルを用意する class TFLiteActivity : AbstractCameraXActivity() { ~~~~省略~~~~ private fun initializeTFLite(device:
Constants.Device, numThreads: Int) { ~~~~前ページから~~~~ inputImageBuffer = TensorImage(tfliteInterpreter.getInputTensor(0).dataType()) outputProbabilityBuffer = TensorBuffer.createFixedSize( tfliteInterpreter.getOutputTensor(0).shape(), tfliteInterpreter.getInputTensor(0).dataType()) probabilityProcessor = TensorProcessor .Builder() .add(NormalizeOp(0.0f, 1.0f)) .build() } } 入出力テンソルのバッファ 実態はjava.nio.Buffer 出力(確率)の プロセッサ 19
TFLiteで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float>
{ val bitmap = Utils.imageToBitmap(image) val cropSize = Math.min(bitmap.width, bitmap.height) inputImageBuffer.load(bitmap) val inputImage = ImageProcessor .Builder() .add(ResizeWithCropOrPadOp(cropSize, cropSize)) .add(ResizeOp(224, 224, ResizeMethod.NEAREST_NEIGHBOR)) .add(NormalizeOp(127.5f, 127.5f)) .build() .process(inputImageBuffer) ~~~~次ページへ~~~~ } 前処理 ImageProxyをbitmap →テンソルに変換 (同時にリサイズと正規化 ) 20
TFLiteで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float>
{ ~~~~前ページから~~~~ tfliteInterpreter.run(inputImage!!.buffer, outputProbabilityBuffer.buffer.rewind()) val labeledProbability: Map<String, Float> = TensorLabel( labelsList, probabilityProcessor.process(outputProbabilityBuffer) ).mapWithFloatValue return labeledProbability } @UiThread override fun showResult(result: String) { textView.text = result } outputProbBufferに 推論結果を格納 ラベルと推論結果を紐 付ける 結果を表示 21
• torch.jit.trace() ◦ 汎用的なJITコンパイラでモバイル用のモデルを生成。 モバイル用に最適化するものではない。 ◦ Pythonで作ったPyTorchのモデルをC++から直接呼べるように変換している。 https://github.com/pytorch/pytorch/tree/master/torch/jit PyTorch Mobile
• org.pytorch.* torch.jit.trace()で生成したモデルを Nativeライブラリで動かすための Java実装を提供。 https://github.com/pytorch/pytorch/tree/master/android • com.facebook.soloader.* org.pytorch.*の実態はSoLoaderというFacebook製のネイティブコードローダー。 https://github.com/facebook/SoLoader スマホで推論するためのモデル変換 スマホで推論モデルを動かすためのランタイム 22
server Torch API PyTorch Mobile client Torch torch.jit.trace model.pt SoLoader
Graph computation CPU Python Java (Kotlin) 23
PyTorch Mobileの推論モデルを用意する class PyTorchActivity : AbstractCameraXActivity() { ~~~~省略~~~~ private fun
initializePyTorch() { val pytorchModule = Module.load(Utils.assetFilePath( this, Constants.PYTORCH_RESNET18_PATH)) val mInputTensorBuffer = Tensor.allocateFloatBuffer(3 * 224 * 224) val mInputTensor = Tensor.fromBlob( mInputTensorBuffer, longArrayOf(1, 3, 224L, 224L) ) } } 推論モデルファイルをロード この先はSoLoader 入力のテンソルを用意 実態はjava.nio.Buffer 24
PyTorch Mobileで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String,
Float> { TensorImageUtils.imageYUV420CenterCropToFloatBuffer( image.image, rotationDegrees, 224, 224, TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB, mInputTensorBuffer, 0 ) ~~~~次ページへ~~~~ } 前処理 ImageProxyを テンソルに変換 (同時にリサイズと正規化 ) 25
PyTorch Mobileで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String,
Float> { ~~~~前ページから~~~~ val outputModule = pytorchModule.forward(IValue.from(mInputTensor)).toTensor() val scores = outputModule.dataAsFloatArray val labeledProbability: MutableMap<String, Float> = mutableMapOf() for (i in 0 until labelsList.size - 1) { labeledProbability[labelsList[i + 1]] = score[i] } return labeledProbability } @UiThread override fun showResult(result: String) { textView.text = result } 推論し、結果を テンソルに変換 ラベルと 推論結果を 紐付ける 結果を表示 26
こんな感じで動きます 27
TFLiteとPyTorch Mobileを使ってみた感想 • 高性能。 • CPUだけでなくGPU/NNAPI移譲が可能。 • 各種オプションやExampleが豊富。 • 最低限必要な機能がある。
• CPUのみ。 • オプションが少ない分、シンプルに書くことが できる。 28