$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
TFLite and PyTorch Mobile
Search
shibuiwilliam
March 15, 2022
Technology
0
640
TFLite and PyTorch Mobile
Running TFLite and PyTorch Mobile
shibuiwilliam
March 15, 2022
Tweet
Share
More Decks by shibuiwilliam
See All by shibuiwilliam
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
4
610
プロンプトやエージェントを自動的に作る方法
shibuiwilliam
15
15k
生成AIシステムとAIエージェントに関する性能や安全性の評価
shibuiwilliam
2
440
AIエージェントによるエンタープライズ向けスライド検索!
shibuiwilliam
4
1.1k
実践マルチモーダル検索!
shibuiwilliam
3
870
生成AI時代のデータ基盤
shibuiwilliam
7
5.1k
LLM時代の検索とコンテキストエンジニアリング
shibuiwilliam
3
1.9k
AI人生苦節10年で会得したAIがやること_人間がやること.pdf
shibuiwilliam
1
460
LayerXのApplied R&D
shibuiwilliam
2
96
Other Decks in Technology
See All in Technology
Identity Management for Agentic AI 解説
fujie
0
230
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
2.1k
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
150
AWSに革命を起こすかもしれない新サービス・アップデートについてのお話
yama3133
0
270
Sansanが実践する Platform EngineeringとSREの協創
sansantech
PRO
2
960
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
1.5k
【U/Day Tokyo 2025】Cygames流 最新スマートフォンゲームの技術設計 〜『Shadowverse: Worlds Beyond』におけるアーキテクチャ再設計の挑戦~
cygames
PRO
2
940
子育てで想像してなかった「見えないダメージ」 / Unforeseen "hidden burdens" of raising children.
pauli
2
300
SREには開発組織全体で向き合う
koh_naga
0
390
Kiro を用いたペアプロのススメ
taikis
3
930
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
260
たまに起きる外部サービスの障害に備えたり備えなかったりする話
egmc
0
330
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Navigating Algorithm Shifts & AI Overviews - #SMXNext
aleyda
0
1k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.3k
The SEO Collaboration Effect
kristinabergwall1
0
300
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
23
[SF Ruby Conf 2025] Rails X
palkan
0
550
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
So, you think you're a good person
axbom
PRO
0
1.8k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.7k
Exploring the relationship between traditional SERPs and Gen AI search
raygrieselhuber
PRO
2
3.4k
The AI Search Optimization Roadmap by Aleyda Solis
aleyda
1
5k
Transcript
TFLiteとPyTorch Mobile 2020/06/17 shibui yusuke 1
自己紹介 cat : 0.55 dog: 0.45 human : 0.70 gorilla
: 0.30 画像分類 Shibui Yusuke • メルカリ AI Team 基盤エンジニア MLエンジニア その他いろいろ • Github: @shibuiwilliam • Qiita: @cvusk • Facebook: @shibui yusuke • 最近やってること:Android、AR MLシステムデザインパターン作成中。 これにEdge AIパターンを追加したい! https://github.com/mercari/ml-system -design-pattern 2
今日のアイドル マルグレーテちゃん( ♀) 1歳 ノルウェージャンフォレストキャット 趣味は爪研ぎとゴミ箱あさり! 3
• Why Edge AI? • Tensorflow Lite & PyTorch Mobile
• Let’s Edge AI Agenda 4
Why Edge AI? • サーバサイドでAI • クライアントサイドで AI ボトル ネック
ボトル ネック 高性能 低性能 リアル タイム ・Kotlin ・Java ・Swift ・C++ ・C 情報保護 ・Python ・Python ・Python 5
AIをスマホで動かす • AIはAIだけではない。 ◦ 前処理 カメラで画像を取得し、 画像をAIで扱えるように サイズとRGBを調整して テンソル(行列)に変換する。 ◦
AI 前処理済みのテンソルにたくさんの 掛け算と足し算(積和演算)をする。 ◦ 後処理 AIの結果をスマホの画面に表示。 猫! 6 この画像に写っているものを AIで判定したい
AIをスマホで動かす前処理 • カメラで画像を取得し、画像を AIで扱えるように サイズとRGBを調整してテンソル(行列)に変換する。 0.2 0.3 0.9 0.0 0.0
0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 画像を正方形 (224*224)にリサイズ RGBのテンソル (行列)に分ける テンソルを0~1に正規化 60 90 240 0 0 10 127 195 10 92 128 195 195 161 111 161 7
AIをスマホで動かすモデル • 前処理済みのテンソルにたくさんの掛け算と足し算(積和演算)をする。 AIの実態(ロジックとパラメータの集まり)を「モデル」と呼ぶ。 0.2 0.3 0.9 0.0 0.0 0.1
0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 0.2 0.3 0.9 0.0 0.0 0.1 0.5 0.7 0.1 0.3 0.5 0.7 0.7 0.6 0.4 0.6 tench hen jay kite goose beagle collie stove lion persian siamese gown mask ski ...1000 モデル 演算中にテンソルの形状が変化していく 8
AIをスマホで動かす後処理 • AIの結果をスマホの画面に表示。 猫! tench 5% hen 2% jay 3%
kite 2% goose 10% beagle 2% collie 3% stove 1% lion 10% persian 15% siamese 10% gown 4% mask 2% ski 3% ...1000 ... 9
Google製のTensorflowをモバイルで 動かすためのライブラリ。 Android/iOS/ラズパイ/マイコン対応。 AIのモバイル対応では高性能で汎用的。 TensorFlow Lite & PyTorch Mobile スマホでAIのモデルを動かすための主なライブラリ
Facebook製のPyTorchをモバイルで 動かすためのライブラリ。 Android/iOS対応。 PyTorchは使いやすさやシンプルさから AI研究で使われることが多い。 10
Let's Edge AI ImageAnalysisでTFLiteと PyTorchMobileを実行 WorkerThreadで推論 推論結果 上位3件 ソースコードはこちら。 https://github.com/shibuiwilliam/TFLitePyTorch
11
CameraXにImageAnalysisをbind abstract class AbstractCameraXActivity : AppCompatActivity(){ @WorkerThread protected abstract fun
analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float> ~~~~省略~~~~ private fun setupCameraX() { ~~~~省略(preview)~~~~ val imageAnalysisConfig = ImageAnalysisConfig .Builder() .apply { setCallbackHandler(mBackgroundHandler) setImageReaderMode(ImageAnalysis.ImageReaderMode.ACQUIRE_LATEST_IMAGE) } .build() ~~~~次ページへ~~~~ } } TFLiteとPyTorchMobileが analyzeImage()をoverride 12
CameraXにImageAnalysisをbind abstract class AbstractCameraXActivity : AppCompatActivity(){ @WorkerThread protected abstract fun
analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float> ~~~~省略~~~~ private fun setupCameraX() { ~~~~前ページから~~~~ val imageAnalysis = ImageAnalysis(imageAnalysisConfig) imageAnalysis.analyzer = ImageAnalysis.Analyzer { image: ImageProxy?, rotationDegrees: Int -> if (image == null) return@Analyzer val result = analyzeImage(image, rotationDegrees) if (result != null) runOnUiThread(Runnable { showResult(result) }) } CameraX.bindToLifecycle(this, preview, imageAnalysis) } } 結果を画面に表示 推論して結果を取得 13
AIの開発ステップ 前処理 学習 前処理 推論 後処理 モデル 学習 サーバサイド Python
推論 クライアントサイド Kotlin/Swift モデル 変 換 14 グレー部分を TensorFlowや PyTorchがカバー
• tf.lite.TFLiteConverter ◦ TFLite向けの専用のコンバータでモデルを FlatBuffersに変換する。 ◦ 各種クライアントのTFLite InterpreterがFlatBuffersを読み込んでモデルを動かす。 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/python TensorFlow
Lite スマホで推論するためのモデル変換 スマホで推論モデルを動かすためのランタイム • org.tensorflow.lite.* ◦ チップセットへのdelegateを含めたInterpreter(推論器)を動かすためのライブラリ。 ◦ データの入出力はjava.nio.Bufferに変換、Interpreterを呼び出す。 https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite https://github.com/tensorflow/tensorflow/tree/master/tensorflow/lite/experimenta l/support/java/src/java/org/tensorflow/lite/support 15
TensorFlow Lite Python Java (Kotlin) 16
Neural Network API (NNAPI) Androidデバイスで演算負荷の 高いAI処理を実行するための ネイティブAPI。 演算をGPUや専用チップへ移譲。 アプリ TFLite
NNAPI CPU Proc GPU 17
class TFLiteActivity : AbstractCameraXActivity() { ~~~~省略~~~~ private fun initializeTFLite(device: Constants.Device
= Constants.Device.NNAPI, numThreads: Int = 4) { val delegate = when (device) { Constants.Device.NNAPI -> NnApiDelegate() Constants.Device.GPU -> GpuDelegate() Constants.Device.CPU -> "" } if (delegate != "") tfliteOptions.addDelegate(delegate) tfliteOptions.setNumThreads(numThreads) tfliteModel = FileUtil.loadMappedFile(this, Constants.TFLITE_MOBILENET_V2_PATH) tfliteInterpreter = Interpreter(tfliteModel, tfliteOptions) ~~~~次ページへ~~~~ } } TFLiteの演算を NNAPIやGPU に移譲 既存のモデルファイルを ロード モデルを計算 グラフに変換 TFLiteの推論モデルを用意する 18
TFLiteの推論モデルを用意する class TFLiteActivity : AbstractCameraXActivity() { ~~~~省略~~~~ private fun initializeTFLite(device:
Constants.Device, numThreads: Int) { ~~~~前ページから~~~~ inputImageBuffer = TensorImage(tfliteInterpreter.getInputTensor(0).dataType()) outputProbabilityBuffer = TensorBuffer.createFixedSize( tfliteInterpreter.getOutputTensor(0).shape(), tfliteInterpreter.getInputTensor(0).dataType()) probabilityProcessor = TensorProcessor .Builder() .add(NormalizeOp(0.0f, 1.0f)) .build() } } 入出力テンソルのバッファ 実態はjava.nio.Buffer 出力(確率)の プロセッサ 19
TFLiteで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float>
{ val bitmap = Utils.imageToBitmap(image) val cropSize = Math.min(bitmap.width, bitmap.height) inputImageBuffer.load(bitmap) val inputImage = ImageProcessor .Builder() .add(ResizeWithCropOrPadOp(cropSize, cropSize)) .add(ResizeOp(224, 224, ResizeMethod.NEAREST_NEIGHBOR)) .add(NormalizeOp(127.5f, 127.5f)) .build() .process(inputImageBuffer) ~~~~次ページへ~~~~ } 前処理 ImageProxyをbitmap →テンソルに変換 (同時にリサイズと正規化 ) 20
TFLiteで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String, Float>
{ ~~~~前ページから~~~~ tfliteInterpreter.run(inputImage!!.buffer, outputProbabilityBuffer.buffer.rewind()) val labeledProbability: Map<String, Float> = TensorLabel( labelsList, probabilityProcessor.process(outputProbabilityBuffer) ).mapWithFloatValue return labeledProbability } @UiThread override fun showResult(result: String) { textView.text = result } outputProbBufferに 推論結果を格納 ラベルと推論結果を紐 付ける 結果を表示 21
• torch.jit.trace() ◦ 汎用的なJITコンパイラでモバイル用のモデルを生成。 モバイル用に最適化するものではない。 ◦ Pythonで作ったPyTorchのモデルをC++から直接呼べるように変換している。 https://github.com/pytorch/pytorch/tree/master/torch/jit PyTorch Mobile
• org.pytorch.* torch.jit.trace()で生成したモデルを Nativeライブラリで動かすための Java実装を提供。 https://github.com/pytorch/pytorch/tree/master/android • com.facebook.soloader.* org.pytorch.*の実態はSoLoaderというFacebook製のネイティブコードローダー。 https://github.com/facebook/SoLoader スマホで推論するためのモデル変換 スマホで推論モデルを動かすためのランタイム 22
server Torch API PyTorch Mobile client Torch torch.jit.trace model.pt SoLoader
Graph computation CPU Python Java (Kotlin) 23
PyTorch Mobileの推論モデルを用意する class PyTorchActivity : AbstractCameraXActivity() { ~~~~省略~~~~ private fun
initializePyTorch() { val pytorchModule = Module.load(Utils.assetFilePath( this, Constants.PYTORCH_RESNET18_PATH)) val mInputTensorBuffer = Tensor.allocateFloatBuffer(3 * 224 * 224) val mInputTensor = Tensor.fromBlob( mInputTensorBuffer, longArrayOf(1, 3, 224L, 224L) ) } } 推論モデルファイルをロード この先はSoLoader 入力のテンソルを用意 実態はjava.nio.Buffer 24
PyTorch Mobileで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String,
Float> { TensorImageUtils.imageYUV420CenterCropToFloatBuffer( image.image, rotationDegrees, 224, 224, TensorImageUtils.TORCHVISION_NORM_MEAN_RGB, TensorImageUtils.TORCHVISION_NORM_STD_RGB, mInputTensorBuffer, 0 ) ~~~~次ページへ~~~~ } 前処理 ImageProxyを テンソルに変換 (同時にリサイズと正規化 ) 25
PyTorch Mobileで推論 @WorkerThread override fun analyzeImage(image: ImageProxy, rotationDegrees: Int): Map<String,
Float> { ~~~~前ページから~~~~ val outputModule = pytorchModule.forward(IValue.from(mInputTensor)).toTensor() val scores = outputModule.dataAsFloatArray val labeledProbability: MutableMap<String, Float> = mutableMapOf() for (i in 0 until labelsList.size - 1) { labeledProbability[labelsList[i + 1]] = score[i] } return labeledProbability } @UiThread override fun showResult(result: String) { textView.text = result } 推論し、結果を テンソルに変換 ラベルと 推論結果を 紐付ける 結果を表示 26
こんな感じで動きます 27
TFLiteとPyTorch Mobileを使ってみた感想 • 高性能。 • CPUだけでなくGPU/NNAPI移譲が可能。 • 各種オプションやExampleが豊富。 • 最低限必要な機能がある。
• CPUのみ。 • オプションが少ない分、シンプルに書くことが できる。 28