Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第一回TensorFlowと機械学習に 必要な数学を基礎から学ぶ会発表資料
Search
Shin Asakawa
September 20, 2016
Science
0
230
第一回TensorFlowと機械学習に 必要な数学を基礎から学ぶ会発表資料
第一回の発表資料です
Shin Asakawa
September 20, 2016
Tweet
Share
More Decks by Shin Asakawa
See All by Shin Asakawa
2017-deep-learning-and-psychology-gakushuin-05
shinasakawa
0
92
2017-deep-learning-and-psychology-gakushuin-06
shinasakawa
0
100
2017-deep-learning-and-psychology-gakusyuin-03
shinasakawa
0
170
2017-deep-learning-and-psychology-gakusyuin-02
shinasakawa
0
140
2017 Deep Learning and Psychology Gakusyuin 01
shinasakawa
0
200
linear algebra
shinasakawa
0
63
handout of RNN camp #2
shinasakawa
0
65
Other Decks in Science
See All in Science
Machine Learning for Materials (Challenge)
aronwalsh
0
320
Masseyのレーティングを用いたフォーミュラレースドライバーの実績評価手法の開発 / Development of a Performance Evaluation Method for Formula Race Drivers Using Massey Ratings
konakalab
0
190
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1k
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
3
270
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.2k
mathematics of indirect reciprocity
yohm
1
180
データマイニング - ノードの中心性
trycycle
PRO
0
270
データベース01: データベースを使わない世界
trycycle
PRO
1
770
Ignite の1年間の軌跡
ktombow
0
150
実力評価性能を考慮した弓道高校生全国大会の大会制度設計の提案 / (konakalab presentation at MSS 2025.03)
konakalab
2
190
機械学習 - SVM
trycycle
PRO
1
880
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
110
Featured
See All Featured
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
7
840
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
187
55k
The Language of Interfaces
destraynor
161
25k
Building Applications with DynamoDB
mza
96
6.6k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
Agile that works and the tools we love
rasmusluckow
330
21k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.5k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Transcript
TensorFlowと機械学習に 必要な数学を基礎から学ぶ会 浅川伸一 東京女子大学
[email protected]
日比谷文化図書館セミナールームA 2016年9月29日19:00 -21:30
09/17/2016 2 /13 本日の内容 1. 自己紹介 2. 環境の確認 3. Udacity
への登録 4. 進め方についてのご相談 5. 実習
3/13 09/21/16 自己紹介 浅川伸一 東京女子大学 情報処理センター勤務。早稲田大学在学時 はピアジェの発生論的認識論に心酔する。卒業後エルマンネットの考 案者ジェフ・エルマンに師事,薫陶を受ける。以来人間の高次認知機 能をシミュレートすることを目指している。知的情報処理機械を作るこ とを通して知的情報処理とは何かを考えたいと思っている。著書に
Python で実践する深層学習( 2016) コロナ社 . ディープラーニング, ビッグデータ,機械学習 --- あるいはその心理学 (2015) 新曜社。 「ニューラルネットワークの数理的基礎」「脳損傷とニューラルネット ワークモデル,神経心理学への適用例」いずれも守一雄他編 コネク ショニストモデルと心理学 (2001) 北大路書房などがある
4/13 09/21/16 師匠ジェフ・エルマンとUCSDキャンパス内 2002年ころ
09/17/2016 5 /13 ←2016年 2015年→
09/17/2016 6 /13 1. 最近のAI研究の特徴 1. 畳み込みニューラルネットワーク 2. リカレントニューラルネットワーク 3.
強化学習
09/17/2016 7 /13 1. 最近のAI研究の特徴 1.畳み込みニューラルネットワーク – 人間超え 2.リカレントニューラルネットワーク 3.強化学習
2010 2011 2012 2013 2014 2015 開催年 0 0.05 0.1 0.15 0.2 0.25 0.3 予測誤差 人間の成績=0.051 0.282 0.258 0.164 0.117 0.067 0.036
09/17/2016 8 /13 1. 最近のAI研究の特徴 1.畳み込みニューラルネットワーク 2.リカレントニューラルネットワーク – SOTA(LSTM, 機械翻訳,対話生成,画像文章相互変
換,etc) 3.強化学習
09/17/2016 9 /13 1. 最近のAI研究の特徴 1.畳み込みニューラルネットワーク 2.リカレントニューラルネットワーク 3.強化学習 – 人間超え
AlphaGO From ``Mastering the game of Go ith deep neural networks and tree search’’ (2016)
09/17/2016 10 /13 1. 最近のAI研究の特徴 4つの要因 1.計算 (ムーアの法則,GPUs, ASICs), 2.データ
(e.g. ImageNet), 3.アルゴリズム (e.g. バックプロパゲーション, CNN, LSTM), and 4.基盤 (Linux, TCP/IP, Git, ROS, PR2, AWS, AMT, TensorFlow, etc.). http://karpathy.github.io/2016/05/31/rl/
09/17/2016 11 /13 環境構築 1.Linux 2.MacOS 3.Windows 10 (Docker)
09/17/2016 12 /13
09/17/2016 13 /13 Udacity への登録 1.Google 作成の TensorFlow 入門コース https://www.udacity.com/course/deep-learn
ing--ud730 2.上の日本語訳ニコニコ動画 小学生でも分かる深 層学習 http://www.nicovideo.jp/watch/sm28230856