Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
野球エンジニアの72万球 #BPStudy
Search
Shinichi Nakagawa
PRO
March 29, 2018
Research
0
2.6k
野球エンジニアの72万球 #BPStudy
Baseballsavantを例とした可視化と簡単な分析事例です
Shinichi Nakagawa
PRO
March 29, 2018
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
260
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
130
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.7k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.4k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
510
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.9k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.5k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
91k
Other Decks in Research
See All in Research
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
260
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
540
湯村研究室の紹介2025 / yumulab2025
yumulab
0
280
Remote sensing × Multi-modal meta survey
satai
4
670
SREのためのテレメトリー技術の探究 / Telemetry for SRE
yuukit
13
2.7k
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
450
令和最新技術で伝統掲示板を再構築: HonoX で作る型安全なスレッドフロート型掲示板 / かろっく@calloc134 - Hono Conference 2025
calloc134
0
470
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
110
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
150
SkySense V2: A Unified Foundation Model for Multi-modal Remote Sensing
satai
3
300
When Learned Data Structures Meet Computer Vision
matsui_528
1
2k
Featured
See All Featured
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
SEOcharity - Dark patterns in SEO and UX: How to avoid them and build a more ethical web
sarafernandez
0
98
Marketing to machines
jonoalderson
1
4.5k
[RailsConf 2023] Rails as a piece of cake
palkan
58
6.2k
エンジニアに許された特別な時間の終わり
watany
106
220k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
220
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
420
Agile that works and the tools we love
rasmusluckow
331
21k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
530
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
80
Transcript
ٿΤϯδχΞͷ72ສٿ τϥοΩϯάɾσʔλ͔ΒޠΔٿϊϯϑΟΫγϣϯ Shinichi Nakagawa@shinyorke
ٿΤϯδχΞis୭?
ʲʳϫΠͰ͢ • Shinichi Nakagawa(த৳Ұ) • ωΫετϕʔε CTO/ٿΤϯδχΞ • #ηΠόʔϝτϦΫε #Python
#σʔλੳ • Baseball Play Study ։͔࢝࣌Βৗ࿈(2014ʙ) • Baseball Play Study͔Βϗϯτʹٿքʹདྷ·ͨ͠
ʁʁʁʮ72ສٿ͛ͨΒݞග͕(ryʯ ※͛ͯͳ͍Ͱ͢w
72ສٿ=MLBͷ1γʔζϯٿ 2017ͷ࣮,ϨΪϡϥʔγʔζϯͷΈ. ϓϨʔΦϑΛؚΊΔͱ73ສٿͪΐͬͱʹͳΔ.
Ͳ͜ʹσʔλ͋Δͷ? • MLBެࣜʮBaseballsavantʯͱ͍͏αΠτͰ ୭ͰೖखͰ͖Δ • https://baseballsavant.mlb.com/ statcast_search • τϥοΫϚϯɾStatcastͰهͨ͠ τϥοΩϯάɾσʔλ͕ݩʹͳ͍ͬͯΔ
τϥοΫϚϯ=ٿɾଧٿͷܭଌػث ͘Θ͘͠ʮBaseball GeeksʯͷղઆΛͲ͏ͧʂ https://www.baseballgeeks.jp/?p=3551
ࠓͷςʔϚʮଧٿʯ • 72ສٿ͔Βબग़ͨ͠ʮҹతͳଧٿʯΛհ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • งғؾΛ௫ΜͰ͘ΕΔͱ͋Γ͕͍ͨͰ͢
128,945 / 718,917(ٿ) ※શσʔλͷ18%Λ༻(͓͓Αͦ100MB͘Β͍)
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ खͷ͓ࣄκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ ্͕Γ͗͌͢ खͷ͓ࣄκʔϯ
֮͑ͯ΄͍͜͠ͱ • ͍͍ײ͡ͷʮଧٿʯʮඈᠳ֯ʯͰඈͿଧٿϗʔϜϥϯɾଧʹͳΔՄೳੑ͕ߴ͍ • ҆ • 187km/h / 8~50 •
161km/h / 24~33 • 158km/h / 26~30 • ͜ΕΛʮόϨϧκʔϯʯͱ͍͍·͢ • ʁʁʁʮڈϑϥΠϘʔϧɾϨϘϦϡʔγϣϯ͕͋ͬͨ͡Όͳ͍ɺͦΕ(ryʯ ˠਖ਼ղʂͦ͏͍͏͜ͱͰ͢ • ʲࢀߟจݙʳ https://www.baseballgeeks.jp/?p=1342 ※Baseball GeeksΑΓҾ༻
ೋਓͷଧऀʹ͍ͭͯ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • ͜ͷೋਓͷଧٿΛݟͯΈΑ͏
ҰਓʮIchiro Suzukiʯ ϚϦφʔζ෮ؼ͓ΊͰͱ͏͍͟͝·͢ʂ ը૾ɿ https://commons.wikimedia.org/wiki/File:Ichiro_Suzuki_2010.jpg
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ όϨϧ ൃݟʂ
ΠνϩʔબखͷόϨϧ • 2017/8/22 ϑΟϦʔζઓ(ఢͰͷࢼ߹) • ୈ3߸ιϩ,ઌൃͷϊϥ͔ΒҰൃ • 160.48 km/h, 28
• શ3ຊͷΞʔνத,όϨϧೖΓ͜ͷ1ຊͷΈ …Ͱ͚͢Ͳ,͜Ε͕40ͱ͔ා͍(ଚܟͷ؟ࠩ͠)
ೋਓʮMike Troutʯ େ୩ᠳฏ(ΤϯδΣϧε)ͷಉ྅͔ͭεʔύʔελʔ ը૾ɿ https://commons.wikimedia.org/wiki/File:Los_Angeles_Angels_center_fielder_Mike_Trout_(27)_(5972457428).jpg
Mike Trout #ͱ ※೦ͷҝ • ϝδϟʔΛද͢ΔελʔͷҰਓ • ϩαϯθϧεɾΤϯθϧεͷ֎ख(ηϯλʔ) • ӈ͛ӈଧͪ,26ࡀ,ϝδϟʔ8
• ߈कࡾഥࢠ͕ʮຊʹʯἧ໊ͬͨબख • ௨ࢉOPS .976ɹ˞Ϊʔλ(ιϑτόϯΫ).946
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢ όϨϧ͚ͩͲ Ξτͩͱʁ
Ξτʹͳͬͨଧٿͷৄࡉ X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
͜Ε͍͢͝ϓϨʔͳͷͰʁ • ͱࢥ͍,ࢼ߹݁ՌΛνΣοΫ • هɿηϯλʔϑϥΠ • ϑΝΠϯϓϨʔͱ͍͏هͳ͘ • ී௨ͷଧٿͱͯ͠ͱΒΕ͍ͯͨ •
ϝονϟྑ͍͋ͨΓͷਅਖ਼໘ͩͬͨʁʁʁ ;ʔΜ(ಡΈ)
·ͱΊ • ϝδϟʔϦʔάଧٿɾٿͷσʔλ͕ϑΝϯͰ͑Δ • ଧٿͱ֯ʹண͢Δ͚ͩͰ৭ʑͳࢹ͕Ͱ͖Δ • Πνϩʔબख·ͩ·͔ͩͬͱͤΔ (ελΠϧม͑ͯ͘Εͳ͍͔ͳ͋ʁ) • େ୩ᠳฏ͕͛Δͱ͖τϥτʹͯ͠Ͷ
• ࢸͬͯී௨ͷϑϥΠ࣮ී௨͡Όͳ͍Մೳੑ͕
τϥοΩϯάɾσʔλ ָ͘͠ͳ͖͔ͬͯͨͳʁ
Baseball GeeksͰͬͱָ͘͠! • τϥοΩϯάɾσʔλΛ׆༻ͨ͠ٿͷ৽͍͠ݟํɾࢹΛհͯ͠·͢ • σʔλɾεϙʔπՊֶͰ໌Β͔ʹͳͬͨ͜ͱΛʮΘ͔Γ͘͢ʯ͑Δ • ΈΜͳಡΜͰͶ&ϒΫϚΑΖ͘͠ʂ https://www.baseballgeeks.jp/
ϓϨΠϘʔϧʂ ࠓٿͰྑ͍ҰΛʂ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠⽁ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)