Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
野球エンジニアの72万球 #BPStudy
Search
Shinichi Nakagawa
PRO
March 29, 2018
Research
0
2.6k
野球エンジニアの72万球 #BPStudy
Baseballsavantを例とした可視化と簡単な分析事例です
Shinichi Nakagawa
PRO
March 29, 2018
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
270
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
130
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.9k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.7k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
520
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
4.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.6k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
91k
Other Decks in Research
See All in Research
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
4
1.3k
2026-01-30-MandSL-textbook-jp-cos-lod
yegusa
0
220
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
1.2k
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
大規模言語モデルにおけるData-Centric AIと合成データの活用 / Data-Centric AI and Synthetic Data in Large Language Models
tsurubee
1
500
AIスーパーコンピュータにおけるLLM学習処理性能の計測と可観測性 / AI Supercomputer LLM Benchmarking and Observability
yuukit
1
660
ACL読み会2025: Can Language Models Reason about Individualistic Human Values and Preferences?
yukizenimoto
0
130
Aurora Serverless からAurora Serverless v2への課題と知見を論文から読み解く/Understanding the challenges and insights of moving from Aurora Serverless to Aurora Serverless v2 from a paper
bootjp
6
1.5k
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
空間音響処理における物理法則に基づく機械学習
skoyamalab
0
190
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
630
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
280
Featured
See All Featured
The Language of Interfaces
destraynor
162
26k
Navigating Team Friction
lara
192
16k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.7k
The Pragmatic Product Professional
lauravandoore
37
7.1k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
Beyond borders and beyond the search box: How to win the global "messy middle" with AI-driven SEO
davidcarrasco
1
57
How To Speak Unicorn (iThemes Webinar)
marktimemedia
1
380
A Modern Web Designer's Workflow
chriscoyier
698
190k
Building Applications with DynamoDB
mza
96
6.9k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
350
Transcript
ٿΤϯδχΞͷ72ສٿ τϥοΩϯάɾσʔλ͔ΒޠΔٿϊϯϑΟΫγϣϯ Shinichi Nakagawa@shinyorke
ٿΤϯδχΞis୭?
ʲʳϫΠͰ͢ • Shinichi Nakagawa(த৳Ұ) • ωΫετϕʔε CTO/ٿΤϯδχΞ • #ηΠόʔϝτϦΫε #Python
#σʔλੳ • Baseball Play Study ։͔࢝࣌Βৗ࿈(2014ʙ) • Baseball Play Study͔Βϗϯτʹٿքʹདྷ·ͨ͠
ʁʁʁʮ72ສٿ͛ͨΒݞග͕(ryʯ ※͛ͯͳ͍Ͱ͢w
72ສٿ=MLBͷ1γʔζϯٿ 2017ͷ࣮,ϨΪϡϥʔγʔζϯͷΈ. ϓϨʔΦϑΛؚΊΔͱ73ສٿͪΐͬͱʹͳΔ.
Ͳ͜ʹσʔλ͋Δͷ? • MLBެࣜʮBaseballsavantʯͱ͍͏αΠτͰ ୭ͰೖखͰ͖Δ • https://baseballsavant.mlb.com/ statcast_search • τϥοΫϚϯɾStatcastͰهͨ͠ τϥοΩϯάɾσʔλ͕ݩʹͳ͍ͬͯΔ
τϥοΫϚϯ=ٿɾଧٿͷܭଌػث ͘Θ͘͠ʮBaseball GeeksʯͷղઆΛͲ͏ͧʂ https://www.baseballgeeks.jp/?p=3551
ࠓͷςʔϚʮଧٿʯ • 72ສٿ͔Βબग़ͨ͠ʮҹతͳଧٿʯΛհ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • งғؾΛ௫ΜͰ͘ΕΔͱ͋Γ͕͍ͨͰ͢
128,945 / 718,917(ٿ) ※શσʔλͷ18%Λ༻(͓͓Αͦ100MB͘Β͍)
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ खͷ͓ࣄκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ ্͕Γ͗͌͢ खͷ͓ࣄκʔϯ
֮͑ͯ΄͍͜͠ͱ • ͍͍ײ͡ͷʮଧٿʯʮඈᠳ֯ʯͰඈͿଧٿϗʔϜϥϯɾଧʹͳΔՄೳੑ͕ߴ͍ • ҆ • 187km/h / 8~50 •
161km/h / 24~33 • 158km/h / 26~30 • ͜ΕΛʮόϨϧκʔϯʯͱ͍͍·͢ • ʁʁʁʮڈϑϥΠϘʔϧɾϨϘϦϡʔγϣϯ͕͋ͬͨ͡Όͳ͍ɺͦΕ(ryʯ ˠਖ਼ղʂͦ͏͍͏͜ͱͰ͢ • ʲࢀߟจݙʳ https://www.baseballgeeks.jp/?p=1342 ※Baseball GeeksΑΓҾ༻
ೋਓͷଧऀʹ͍ͭͯ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • ͜ͷೋਓͷଧٿΛݟͯΈΑ͏
ҰਓʮIchiro Suzukiʯ ϚϦφʔζ෮ؼ͓ΊͰͱ͏͍͟͝·͢ʂ ը૾ɿ https://commons.wikimedia.org/wiki/File:Ichiro_Suzuki_2010.jpg
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ όϨϧ ൃݟʂ
ΠνϩʔબखͷόϨϧ • 2017/8/22 ϑΟϦʔζઓ(ఢͰͷࢼ߹) • ୈ3߸ιϩ,ઌൃͷϊϥ͔ΒҰൃ • 160.48 km/h, 28
• શ3ຊͷΞʔνத,όϨϧೖΓ͜ͷ1ຊͷΈ …Ͱ͚͢Ͳ,͜Ε͕40ͱ͔ා͍(ଚܟͷ؟ࠩ͠)
ೋਓʮMike Troutʯ େ୩ᠳฏ(ΤϯδΣϧε)ͷಉ྅͔ͭεʔύʔελʔ ը૾ɿ https://commons.wikimedia.org/wiki/File:Los_Angeles_Angels_center_fielder_Mike_Trout_(27)_(5972457428).jpg
Mike Trout #ͱ ※೦ͷҝ • ϝδϟʔΛද͢ΔελʔͷҰਓ • ϩαϯθϧεɾΤϯθϧεͷ֎ख(ηϯλʔ) • ӈ͛ӈଧͪ,26ࡀ,ϝδϟʔ8
• ߈कࡾഥࢠ͕ʮຊʹʯἧ໊ͬͨબख • ௨ࢉOPS .976ɹ˞Ϊʔλ(ιϑτόϯΫ).946
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢ όϨϧ͚ͩͲ Ξτͩͱʁ
Ξτʹͳͬͨଧٿͷৄࡉ X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
͜Ε͍͢͝ϓϨʔͳͷͰʁ • ͱࢥ͍,ࢼ߹݁ՌΛνΣοΫ • هɿηϯλʔϑϥΠ • ϑΝΠϯϓϨʔͱ͍͏هͳ͘ • ී௨ͷଧٿͱͯ͠ͱΒΕ͍ͯͨ •
ϝονϟྑ͍͋ͨΓͷਅਖ਼໘ͩͬͨʁʁʁ ;ʔΜ(ಡΈ)
·ͱΊ • ϝδϟʔϦʔάଧٿɾٿͷσʔλ͕ϑΝϯͰ͑Δ • ଧٿͱ֯ʹண͢Δ͚ͩͰ৭ʑͳࢹ͕Ͱ͖Δ • Πνϩʔબख·ͩ·͔ͩͬͱͤΔ (ελΠϧม͑ͯ͘Εͳ͍͔ͳ͋ʁ) • େ୩ᠳฏ͕͛Δͱ͖τϥτʹͯ͠Ͷ
• ࢸͬͯී௨ͷϑϥΠ࣮ී௨͡Όͳ͍Մೳੑ͕
τϥοΩϯάɾσʔλ ָ͘͠ͳ͖͔ͬͯͨͳʁ
Baseball GeeksͰͬͱָ͘͠! • τϥοΩϯάɾσʔλΛ׆༻ͨ͠ٿͷ৽͍͠ݟํɾࢹΛհͯ͠·͢ • σʔλɾεϙʔπՊֶͰ໌Β͔ʹͳͬͨ͜ͱΛʮΘ͔Γ͘͢ʯ͑Δ • ΈΜͳಡΜͰͶ&ϒΫϚΑΖ͘͠ʂ https://www.baseballgeeks.jp/
ϓϨΠϘʔϧʂ ࠓٿͰྑ͍ҰΛʂ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠⽁ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)