Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
野球エンジニアの72万球 #BPStudy
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Shinichi Nakagawa
PRO
March 29, 2018
Research
0
2.6k
野球エンジニアの72万球 #BPStudy
Baseballsavantを例とした可視化と簡単な分析事例です
Shinichi Nakagawa
PRO
March 29, 2018
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
270
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
130
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.9k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.7k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
520
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
4.1k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.6k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.3k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
91k
Other Decks in Research
See All in Research
20251023_くまもと21の会例会_「車1割削減、渋滞半減、公共交通2倍」をめざして.pdf
trafficbrain
0
180
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
350
2025-11-21-DA-10th-satellite
yegusa
0
110
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
530
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
220
Collective Predictive Coding and World Models in LLMs: A System 0/1/2/3 Perspective on Hierarchical Physical AI (IEEE SII 2026 Plenary Talk)
tanichu
1
250
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
170
[Devfest Incheon 2025] 모두를 위한 친절한 언어모델(LLM) 학습 가이드
beomi
2
1.4k
R&Dチームを起ち上げる
shibuiwilliam
1
160
[チュートリアル] 電波マップ構築入門 :研究動向と課題設定の勘所
k_sato
0
260
2026年1月の生成AI領域の重要リリース&トピック解説
kajikent
0
380
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
900
Featured
See All Featured
Building Applications with DynamoDB
mza
96
6.9k
Test your architecture with Archunit
thirion
1
2.2k
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
150
SEO Brein meetup: CTRL+C is not how to scale international SEO
lindahogenes
0
2.3k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Exploring anti-patterns in Rails
aemeredith
2
250
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Ethics towards AI in product and experience design
skipperchong
2
200
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
[SF Ruby Conf 2025] Rails X
palkan
1
760
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Transcript
ٿΤϯδχΞͷ72ສٿ τϥοΩϯάɾσʔλ͔ΒޠΔٿϊϯϑΟΫγϣϯ Shinichi Nakagawa@shinyorke
ٿΤϯδχΞis୭?
ʲʳϫΠͰ͢ • Shinichi Nakagawa(த৳Ұ) • ωΫετϕʔε CTO/ٿΤϯδχΞ • #ηΠόʔϝτϦΫε #Python
#σʔλੳ • Baseball Play Study ։͔࢝࣌Βৗ࿈(2014ʙ) • Baseball Play Study͔Βϗϯτʹٿքʹདྷ·ͨ͠
ʁʁʁʮ72ສٿ͛ͨΒݞග͕(ryʯ ※͛ͯͳ͍Ͱ͢w
72ສٿ=MLBͷ1γʔζϯٿ 2017ͷ࣮,ϨΪϡϥʔγʔζϯͷΈ. ϓϨʔΦϑΛؚΊΔͱ73ສٿͪΐͬͱʹͳΔ.
Ͳ͜ʹσʔλ͋Δͷ? • MLBެࣜʮBaseballsavantʯͱ͍͏αΠτͰ ୭ͰೖखͰ͖Δ • https://baseballsavant.mlb.com/ statcast_search • τϥοΫϚϯɾStatcastͰهͨ͠ τϥοΩϯάɾσʔλ͕ݩʹͳ͍ͬͯΔ
τϥοΫϚϯ=ٿɾଧٿͷܭଌػث ͘Θ͘͠ʮBaseball GeeksʯͷղઆΛͲ͏ͧʂ https://www.baseballgeeks.jp/?p=3551
ࠓͷςʔϚʮଧٿʯ • 72ສٿ͔Βબग़ͨ͠ʮҹతͳଧٿʯΛհ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • งғؾΛ௫ΜͰ͘ΕΔͱ͋Γ͕͍ͨͰ͢
128,945 / 718,917(ٿ) ※શσʔλͷ18%Λ༻(͓͓Αͦ100MB͘Β͍)
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ खͷ͓ࣄκʔϯ
ʲਤʳશଧٿσʔλͷ݁Ռ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ଧκʔϯ ୯ଧκʔϯ ্͕Γ͗͌͢ खͷ͓ࣄκʔϯ
֮͑ͯ΄͍͜͠ͱ • ͍͍ײ͡ͷʮଧٿʯʮඈᠳ֯ʯͰඈͿଧٿϗʔϜϥϯɾଧʹͳΔՄೳੑ͕ߴ͍ • ҆ • 187km/h / 8~50 •
161km/h / 24~33 • 158km/h / 26~30 • ͜ΕΛʮόϨϧκʔϯʯͱ͍͍·͢ • ʁʁʁʮڈϑϥΠϘʔϧɾϨϘϦϡʔγϣϯ͕͋ͬͨ͡Όͳ͍ɺͦΕ(ryʯ ˠਖ਼ղʂͦ͏͍͏͜ͱͰ͢ • ʲࢀߟจݙʳ https://www.baseballgeeks.jp/?p=1342 ※Baseball GeeksΑΓҾ༻
ೋਓͷଧऀʹ͍ͭͯ • ຊͱ͍,ϝδϟʔͷϨδΣϯυ͞Μ • ࠓ͔ΒೋྲྀͰߦ͘ਓ…ͷಉ྅ • ͜ͷೋਓͷଧٿΛݟͯΈΑ͏
ҰਓʮIchiro Suzukiʯ ϚϦφʔζ෮ؼ͓ΊͰͱ͏͍͟͝·͢ʂ ը૾ɿ https://commons.wikimedia.org/wiki/File:Ichiro_Suzuki_2010.jpg
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ
ʲਤʳIchiro Suzukiબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ ଧκʔϯ όϨϧ ൃݟʂ
ΠνϩʔબखͷόϨϧ • 2017/8/22 ϑΟϦʔζઓ(ఢͰͷࢼ߹) • ୈ3߸ιϩ,ઌൃͷϊϥ͔ΒҰൃ • 160.48 km/h, 28
• શ3ຊͷΞʔνத,όϨϧೖΓ͜ͷ1ຊͷΈ …Ͱ͚͢Ͳ,͜Ε͕40ͱ͔ා͍(ଚܟͷ؟ࠩ͠)
ೋਓʮMike Troutʯ େ୩ᠳฏ(ΤϯδΣϧε)ͷಉ྅͔ͭεʔύʔελʔ ը૾ɿ https://commons.wikimedia.org/wiki/File:Los_Angeles_Angels_center_fielder_Mike_Trout_(27)_(5972457428).jpg
Mike Trout #ͱ ※೦ͷҝ • ϝδϟʔΛද͢ΔελʔͷҰਓ • ϩαϯθϧεɾΤϯθϧεͷ֎ख(ηϯλʔ) • ӈ͛ӈଧͪ,26ࡀ,ϝδϟʔ8
• ߈कࡾഥࢠ͕ʮຊʹʯἧ໊ͬͨબख • ௨ࢉOPS .976ɹ˞Ϊʔλ(ιϑτόϯΫ).946
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢
ʲਤʳMike Troutબखͷଧٿ(2017) X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯ ͜ͷล͕ଧκʔϯ ˠϗʔϜϥϯଟ͗͌͢ όϨϧ͚ͩͲ Ξτͩͱʁ
Ξτʹͳͬͨଧٿͷৄࡉ X(ԣ)ɿଧٿ, Y(ॎ)ɿଧٿ֯
͜Ε͍͢͝ϓϨʔͳͷͰʁ • ͱࢥ͍,ࢼ߹݁ՌΛνΣοΫ • هɿηϯλʔϑϥΠ • ϑΝΠϯϓϨʔͱ͍͏هͳ͘ • ී௨ͷଧٿͱͯ͠ͱΒΕ͍ͯͨ •
ϝονϟྑ͍͋ͨΓͷਅਖ਼໘ͩͬͨʁʁʁ ;ʔΜ(ಡΈ)
·ͱΊ • ϝδϟʔϦʔάଧٿɾٿͷσʔλ͕ϑΝϯͰ͑Δ • ଧٿͱ֯ʹண͢Δ͚ͩͰ৭ʑͳࢹ͕Ͱ͖Δ • Πνϩʔબख·ͩ·͔ͩͬͱͤΔ (ελΠϧม͑ͯ͘Εͳ͍͔ͳ͋ʁ) • େ୩ᠳฏ͕͛Δͱ͖τϥτʹͯ͠Ͷ
• ࢸͬͯී௨ͷϑϥΠ࣮ී௨͡Όͳ͍Մೳੑ͕
τϥοΩϯάɾσʔλ ָ͘͠ͳ͖͔ͬͯͨͳʁ
Baseball GeeksͰͬͱָ͘͠! • τϥοΩϯάɾσʔλΛ׆༻ͨ͠ٿͷ৽͍͠ݟํɾࢹΛհͯ͠·͢ • σʔλɾεϙʔπՊֶͰ໌Β͔ʹͳͬͨ͜ͱΛʮΘ͔Γ͘͢ʯ͑Δ • ΈΜͳಡΜͰͶ&ϒΫϚΑΖ͘͠ʂ https://www.baseballgeeks.jp/
ϓϨΠϘʔϧʂ ࠓٿͰྑ͍ҰΛʂ͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠⽁ Shinichi Nakagawa(Twitter/Facebook/etc… @shinyorke)