Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics ...
Search
Shinichi Nakagawa
PRO
October 01, 2023
Research
1
1.4k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
PyLadies Tokyo 9周年LT
Shinichi Nakagawa
PRO
October 01, 2023
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
98
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
4.8k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
4.6k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
450
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.4k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.1k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
85
87k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
3k
Other Decks in Research
See All in Research
【輪講資料】Moshi: a speech-text foundation model for real-time dialogue
hpprc
3
670
Time to Cash: The Full Stack Breakdown of Modern ATM Attacks
ratatata
0
140
データxデジタルマップで拓く ミラノ発・地域共創最前線
mapconcierge4agu
0
210
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
240
利用シーンを意識した推薦システム〜SpotifyとAmazonの事例から〜
kuri8ive
1
250
電通総研の生成AI・エージェントの取り組みエンジニアリング業務向けAI活用事例紹介
isidaitc
1
960
集合間Bregmanダイバージェンスと置換不変NNによるその学習
wasyro
0
140
Google Agent Development Kit (ADK) 入門 🚀
mickey_kubo
2
1.8k
SSII2025 [SS2] 横浜DeNAベイスターズの躍進を支えたAIプロダクト
ssii
PRO
7
4k
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
190
機械学習と数理最適化の融合 (MOAI) による革新
mickey_kubo
1
320
とあるSREの博士「過程」 / A Certain SRE’s Ph.D. Journey
yuukit
10
4.2k
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
930
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Faster Mobile Websites
deanohume
309
31k
Raft: Consensus for Rubyists
vanstee
140
7.1k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.7k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Measuring & Analyzing Core Web Vitals
bluesmoon
9
580
How STYLIGHT went responsive
nonsquared
100
5.8k
Transcript
ʮ͓ࢄาʯΛͨ݁͠Ռ ࡕਆλΠΨʔε͕༏উͨ݅͠. ࡕਆλΠΨʔε༏উΛه೦ͯ͠PythonͰσʔλੳͨ͠Β ࢥΘͣʮͦΒɺͦ͏Αʯͱೲಘͯ͠͠·ͬͨ. Shinichi Nakagawa(@shinyorke) 2023/10/01 PyLadies Tokyo
9पه೦ύʔςΟʔ
Who am I ? ʢ͓લ୭Α?ʣ • Shinichi Nakagawa@shinyorke • େख֎ࢿܥITίϯαϧاۀϚωʔδϟʔ
• ຊۀͰSREతͳࣄΛ͍ͯ͠·͢. • ΤϯδχΞతʹԿͰͰ͖Δਓ. • దͳ⽁ωλ͔ΒLTΛ͢ΔΤϯδχΞͷਓ. • ஶ໊ͳٕज़ϒϩάʮLean Baseballʯͷਓ. • ຖ10,000าఔͷʮ͓ࢄาʯ͕՝. ※͓ࢄาͷূڌ݅
PyLadies Tokyo 9प͓ΊͰͱ͏͍͟͝·͢🎉 ʢ9ܦͬͯ͠·ͬͨͷ͔…ͳ͍ͭʣ
͏Ұ͓ͭΊͰ͍ͨࣄ͕ ͋Γ·͢ΑͶʁ🐯
ࡕਆλΠΨʔε, ηɾϦʔά༏উ͓ΊͰͱ͏͍͟͝·͢🎉 2005Ҏདྷ18ͿΓͷ༏উ🐯
334 ʲ౾ࣝʳ͓ೃછΈͷͪ͜Βͷࣈ18લͷ༏উ͕ΩοΧέͰര.
18ͿΓʹʮ༏উʯΛ Ϳ͔ͪ·ͨ͠ࡕਆλΠΨʔε ݁ہԿ͕ྑ͔ͬͨͷ͔🤔
ࡕਆλΠΨʔε༏উͷཧ༝ʢͲΕਖ਼ղʣ 1. ໊কʮԬాজʯ௨শʮͲΜͰΜʯͷಜ෮ؼ. →18લͷ༏উԬాಜ&ʮͦΒɺͦ͏Αʯͱೲಘߦ໊͘ࡃ. 2. ࣆJAPAN͕༏উͨ͠WBCʹελϝϯڃͷબखΛग़͍ͯ͠ͳ͔ͬͨ. ࡕਆ͔Βதͱ౬ઙͷΈ͔ͭ͞΄Ͳग़ճଟ͘ͳ͍. 3.
ʮ͓ࢄาେࣄʯʮ໎ͬͨΒา͚ʯͱ͍͏ҙࣝͷժੜ͑. ۩ମతʹʮ࢛ٿʢϑΥΞϘʔϧʣʯΛࢁબΜͩ.
ʮʰ͓ࢄาେࣄʱʰ໎ͬͨΒา͚ʱͱ͍͏ҙࣝͷժੜ͑ʯ ͜Ε͕ࡕਆλΠΨʔε༏উͷͬͱΒ͍͠ཧ༝ͩͱσʔλݴͬͯ·ͨ͠.
ࡕਆͷεʔύʔυϥΠͳʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. ͳ͓ٿʹ͓͚Δʮ͓ࢄาʯʮ࢛ٿʢϑΥΞϘʔϧʣʯͷࣄ. ※εϥϯάతʹʮࢄาʯͱಡΜͰ͍·͢ʢʮา͔ͤΔʯͱ͔ݴ͏ʣ.
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶃ όολʔࡾৼͯ͠ ͍͍͔Β ʮۃʹ͓ࢄาʯ ͠ͳ͍͞. ࡾৼ͍͍͔ͯ͠Βา͚. 11
ʮދଧઢʯվΊʮ”า”ଧઢʯ • 2023ͷࡕਆλΠΨʔε, νʔϜͱ࢛ͯ͠ٿͷ͕ΊͪΌͪ͘Όଟ͍. • ηɾϦʔάͲ͜Ζ͔ϓϩٿશମͰΠέͯΔग़ྥͷߴ͞. • Ұํ, ࢛ٿΛऔΓʹߦ͘ͷʹͭͨΊࡾৼ૿͍͑ͯΔ.
11ଧ੮ʹ1ճ͓ࢄา͢ΔࡕਆλΠΨʔε͞Μ༏लʢϦʔά1Ґʣ. ࠷ԼҐதυϥΰϯζΑΓ1.5ഒͷϖʔεͰʮ͓ࢄาʯΛྔ࢈.
Ұํ, ࡾઢͷ۶ࢦͰ4.5ଧ੮ʹҰࡾৼ͍ͯ͠ΔʢϦʔάϫʔετʣ. ܭࢉ্ελϝϯͷશଧऀ͕ࢼ߹தʹ1ճࡾৼ͍ͯ͠Δࣄʹ.
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄา͢ΔॱʹฒͨϞϊ. ࡕਆૉΒ͍͠, Ұํʮྩͷถ૽ಈʯͷத͞Μ(ry
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶄ ϐονϟʔࡾৼΛ औΒͳ͍͍͔ͯ͘Β ʮࢄาΛࢭΊΖʯ. ૬खͷଧऀΛྥʹग़͔͢Βͣ. 16
૬खͷʮࢄาʯΛઈରʹࢭΊΔखਞ. • 2023ͷࡕਆλΠΨʔε, νʔϜͱͯ͠खͷ༩࢛ٿ͕গͳ͍. • ༩࢛ٿ͕গͳ͍ = ૬खʹ࢛ٿʢࢄาʣΛ͍ͤͯ͞ͳ͍. • ͦͦ͜͜ࡾৼऔΕ͓ͯΓ,
ࡕਆखਞͷ༏ल͕͞Θ͔Δ.
༏लͳࡕਆखਞ, ૬खʹ࢛ٿʢࢄาʣΛ࠷༩͍͑ͯͳ͍ʢϦʔά1Ґʣ. ૬खଧऀʹແବͳ࢛ٿΛग़͞ͳ͍ͱ͍͏పఈͨ͠ํ.
༏लͳࡕਆखਞ, ૬ख͔Βͦͦ͜͜ࡾৼΛୣ͏༷ʢϦʔά4Ґʣ. ࢛ٿ͕ݮΔͱ͍͏͜ͱࡾৼΛऔΕͳ͍ࣄʹܨ͕Δ͕ҧͬͯͨ…ੌ͍🐯
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄาͤ͞ͳ͍ॱʹฒͨϞϊ. ࡕਆ͕ૉΒ͍͕͠, DeNAͷʮࡾৼͨ͘͞ΜऔΔʯʮ࢛ٿগͳ͍ʯ͔͍͍ͬ͜.
???ʮPythonͷ͕ແ͍͡Όͳ͍͔ʁ͍͍͔͛Μʹ͠Ζʯ
ࠓͷσʔλ શ෦PythonͰ ͍͍ײ͡ʹ🐍 େͨ͠ίʔυ͡Όͳ͍ͷͰͥͻਅࣅͯͬͯ͠Έͯ. https://gist.github.com/Shinichi-Nakagawa/3ca01932532ba41ceaef94bd722107b9 NPBͷWebαΠτΛ εΫϨΠϐϯά Google ColabͰ γϡοͱՄࢹԽ.
ʲ݁ʳࡕਆλΠΨʔεʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. • ͳ͓, ࢛ٿ͕૿͑Δͱࡾৼ૿͑ΔʢʣͳͷͰ(ry ͓Θ͔Γ͍͚ͨͩͨͩΖ͏͔?
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠🐯