Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics ...
Search
Shinichi Nakagawa
PRO
October 01, 2023
Research
1
1.5k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
PyLadies Tokyo 9周年LT
Shinichi Nakagawa
PRO
October 01, 2023
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
自らを強いエンジニアにするための3つの習慣 2025/ Fitter happier more productive
shinyorke
PRO
0
240
生成AI時代におけるSREの進化とキャリア戦略 / Building an Embedded SRE team and my career
shinyorke
PRO
0
120
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
5.6k
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
2
6.2k
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
490
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.8k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.5k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.2k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
86
90k
Other Decks in Research
See All in Research
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
150
When Learned Data Structures Meet Computer Vision
matsui_528
1
1.4k
CVPR2025論文紹介:Unboxed
murakawatakuya
0
220
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
2
120
Nullspace MPC
mizuhoaoki
1
500
第二言語習得研究における 明示的・暗示的知識の再検討:この分類は何に役に立つか,何に役に立たないか
tam07pb915
0
400
Agentic AI Era におけるサプライチェーン最適化
mickey_kubo
0
100
地域丸ごとデイサービス「Go トレ」の紹介
smartfukushilab1
0
630
EarthDial: Turning Multi-sensory Earth Observations to Interactive Dialogues
satai
3
410
論文読み会 SNLP2025 Learning Dynamics of LLM Finetuning. In: ICLR 2025
s_mizuki_nlp
0
350
スキマバイトサービスにおける現場起点でのデザインアプローチ
yoshioshingyouji
0
270
Learning to (Learn at Test Time): RNNs with Expressive Hidden States
kurita
1
290
Featured
See All Featured
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
3
390
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Git: the NoSQL Database
bkeepers
PRO
432
66k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.3k
Building Applications with DynamoDB
mza
96
6.8k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
A Tale of Four Properties
chriscoyier
162
23k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
Transcript
ʮ͓ࢄาʯΛͨ݁͠Ռ ࡕਆλΠΨʔε͕༏উͨ݅͠. ࡕਆλΠΨʔε༏উΛه೦ͯ͠PythonͰσʔλੳͨ͠Β ࢥΘͣʮͦΒɺͦ͏Αʯͱೲಘͯ͠͠·ͬͨ. Shinichi Nakagawa(@shinyorke) 2023/10/01 PyLadies Tokyo
9पه೦ύʔςΟʔ
Who am I ? ʢ͓લ୭Α?ʣ • Shinichi Nakagawa@shinyorke • େख֎ࢿܥITίϯαϧاۀϚωʔδϟʔ
• ຊۀͰSREతͳࣄΛ͍ͯ͠·͢. • ΤϯδχΞతʹԿͰͰ͖Δਓ. • దͳ⽁ωλ͔ΒLTΛ͢ΔΤϯδχΞͷਓ. • ஶ໊ͳٕज़ϒϩάʮLean Baseballʯͷਓ. • ຖ10,000าఔͷʮ͓ࢄาʯ͕՝. ※͓ࢄาͷূڌ݅
PyLadies Tokyo 9प͓ΊͰͱ͏͍͟͝·͢🎉 ʢ9ܦͬͯ͠·ͬͨͷ͔…ͳ͍ͭʣ
͏Ұ͓ͭΊͰ͍ͨࣄ͕ ͋Γ·͢ΑͶʁ🐯
ࡕਆλΠΨʔε, ηɾϦʔά༏উ͓ΊͰͱ͏͍͟͝·͢🎉 2005Ҏདྷ18ͿΓͷ༏উ🐯
334 ʲ౾ࣝʳ͓ೃછΈͷͪ͜Βͷࣈ18લͷ༏উ͕ΩοΧέͰര.
18ͿΓʹʮ༏উʯΛ Ϳ͔ͪ·ͨ͠ࡕਆλΠΨʔε ݁ہԿ͕ྑ͔ͬͨͷ͔🤔
ࡕਆλΠΨʔε༏উͷཧ༝ʢͲΕਖ਼ղʣ 1. ໊কʮԬాজʯ௨শʮͲΜͰΜʯͷಜ෮ؼ. →18લͷ༏উԬాಜ&ʮͦΒɺͦ͏Αʯͱೲಘߦ໊͘ࡃ. 2. ࣆJAPAN͕༏উͨ͠WBCʹελϝϯڃͷબखΛग़͍ͯ͠ͳ͔ͬͨ. ࡕਆ͔Βதͱ౬ઙͷΈ͔ͭ͞΄Ͳग़ճଟ͘ͳ͍. 3.
ʮ͓ࢄาେࣄʯʮ໎ͬͨΒา͚ʯͱ͍͏ҙࣝͷժੜ͑. ۩ମతʹʮ࢛ٿʢϑΥΞϘʔϧʣʯΛࢁબΜͩ.
ʮʰ͓ࢄาେࣄʱʰ໎ͬͨΒา͚ʱͱ͍͏ҙࣝͷժੜ͑ʯ ͜Ε͕ࡕਆλΠΨʔε༏উͷͬͱΒ͍͠ཧ༝ͩͱσʔλݴͬͯ·ͨ͠.
ࡕਆͷεʔύʔυϥΠͳʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. ͳ͓ٿʹ͓͚Δʮ͓ࢄาʯʮ࢛ٿʢϑΥΞϘʔϧʣʯͷࣄ. ※εϥϯάతʹʮࢄาʯͱಡΜͰ͍·͢ʢʮา͔ͤΔʯͱ͔ݴ͏ʣ.
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶃ όολʔࡾৼͯ͠ ͍͍͔Β ʮۃʹ͓ࢄาʯ ͠ͳ͍͞. ࡾৼ͍͍͔ͯ͠Βา͚. 11
ʮދଧઢʯվΊʮ”า”ଧઢʯ • 2023ͷࡕਆλΠΨʔε, νʔϜͱ࢛ͯ͠ٿͷ͕ΊͪΌͪ͘Όଟ͍. • ηɾϦʔάͲ͜Ζ͔ϓϩٿશମͰΠέͯΔग़ྥͷߴ͞. • Ұํ, ࢛ٿΛऔΓʹߦ͘ͷʹͭͨΊࡾৼ૿͍͑ͯΔ.
11ଧ੮ʹ1ճ͓ࢄา͢ΔࡕਆλΠΨʔε͞Μ༏लʢϦʔά1Ґʣ. ࠷ԼҐதυϥΰϯζΑΓ1.5ഒͷϖʔεͰʮ͓ࢄาʯΛྔ࢈.
Ұํ, ࡾઢͷ۶ࢦͰ4.5ଧ੮ʹҰࡾৼ͍ͯ͠ΔʢϦʔάϫʔετʣ. ܭࢉ্ελϝϯͷશଧऀ͕ࢼ߹தʹ1ճࡾৼ͍ͯ͠Δࣄʹ.
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄา͢ΔॱʹฒͨϞϊ. ࡕਆૉΒ͍͠, Ұํʮྩͷถ૽ಈʯͷத͞Μ(ry
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶄ ϐονϟʔࡾৼΛ औΒͳ͍͍͔ͯ͘Β ʮࢄาΛࢭΊΖʯ. ૬खͷଧऀΛྥʹग़͔͢Βͣ. 16
૬खͷʮࢄาʯΛઈରʹࢭΊΔखਞ. • 2023ͷࡕਆλΠΨʔε, νʔϜͱͯ͠खͷ༩࢛ٿ͕গͳ͍. • ༩࢛ٿ͕গͳ͍ = ૬खʹ࢛ٿʢࢄาʣΛ͍ͤͯ͞ͳ͍. • ͦͦ͜͜ࡾৼऔΕ͓ͯΓ,
ࡕਆखਞͷ༏ल͕͞Θ͔Δ.
༏लͳࡕਆखਞ, ૬खʹ࢛ٿʢࢄาʣΛ࠷༩͍͑ͯͳ͍ʢϦʔά1Ґʣ. ૬खଧऀʹແବͳ࢛ٿΛग़͞ͳ͍ͱ͍͏పఈͨ͠ํ.
༏लͳࡕਆखਞ, ૬ख͔Βͦͦ͜͜ࡾৼΛୣ͏༷ʢϦʔά4Ґʣ. ࢛ٿ͕ݮΔͱ͍͏͜ͱࡾৼΛऔΕͳ͍ࣄʹܨ͕Δ͕ҧͬͯͨ…ੌ͍🐯
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄาͤ͞ͳ͍ॱʹฒͨϞϊ. ࡕਆ͕ૉΒ͍͕͠, DeNAͷʮࡾৼͨ͘͞ΜऔΔʯʮ࢛ٿগͳ͍ʯ͔͍͍ͬ͜.
???ʮPythonͷ͕ແ͍͡Όͳ͍͔ʁ͍͍͔͛Μʹ͠Ζʯ
ࠓͷσʔλ શ෦PythonͰ ͍͍ײ͡ʹ🐍 େͨ͠ίʔυ͡Όͳ͍ͷͰͥͻਅࣅͯͬͯ͠Έͯ. https://gist.github.com/Shinichi-Nakagawa/3ca01932532ba41ceaef94bd722107b9 NPBͷWebαΠτΛ εΫϨΠϐϯά Google ColabͰ γϡοͱՄࢹԽ.
ʲ݁ʳࡕਆλΠΨʔεʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. • ͳ͓, ࢛ٿ͕૿͑Δͱࡾৼ૿͑ΔʢʣͳͷͰ(ry ͓Θ͔Γ͍͚ͨͩͨͩΖ͏͔?
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠🐯