Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics ...
Search
Shinichi Nakagawa
PRO
October 01, 2023
Research
1
1.4k
阪神タイガース優勝のひみつ - Pythonでシュッと調べた件 / SABRmetrics for Python
PyLadies Tokyo 9周年LT
Shinichi Nakagawa
PRO
October 01, 2023
Tweet
Share
More Decks by Shinichi Nakagawa
See All by Shinichi Nakagawa
生成AIを活用した野球データ分析 - メジャーリーグ編 / Baseball Analytics for Gen AI
shinyorke
PRO
1
540
ゼロから始めるSREの事業貢献 - 生成AI時代のSRE成長戦略と実践 / Starting SRE from Day One
shinyorke
PRO
0
310
AI・LLM事業部のSREとタスクの自動運転
shinyorke
PRO
0
430
実践Dash - 手を抜きながら本気で作るデータApplicationの基本と応用 / Dash for Python and Baseball
shinyorke
PRO
2
3.2k
Terraform, GitHub Actions, Cloud Buildでデータ基盤をProvisioningする / Data Platform provisioning for Google Cloud and Terraform
shinyorke
PRO
2
3.3k
Cloud RunとCloud PubSubでサーバレスなデータ基盤2024 with Terraform / Cloud Run and PubSub with Terraform
shinyorke
PRO
9
4.1k
自らを強いエンジニアにするための3つの習慣 / I need to be myself, I can't be no one else
shinyorke
PRO
84
86k
Pythonとクラウドと野球の推し活. / Baseball Data Platform for Python and Google Cloud
shinyorke
PRO
2
3k
月額コーヒー3.34杯分のコストでオオタニサンの活躍を見守るデータ基盤のはなし / Pyhack Con
shinyorke
PRO
2
530
Other Decks in Research
See All in Research
公立高校入試等に対する受入保留アルゴリズム(DA)導入の提言
shunyanoda
0
6.5k
Ad-DS Paper Circle #1
ykaneko1992
0
5.8k
Creation and environmental applications of 15-year daily inundation and vegetation maps for Siberia by integrating satellite and meteorological datasets
satai
3
170
電力システム最適化入門
mickey_kubo
1
780
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
1
270
PhD Defense 2025: Visual Understanding of Human Hands in Interactions
tkhkaeio
1
110
在庫管理のための機械学習と最適化の融合
mickey_kubo
3
1.1k
カスタマーサクセスの視点からAWS Summitの展示を考える~製品開発で活用できる勘所~
masakiokuda
2
160
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
550
20250624_熊本経済同友会6月例会講演
trafficbrain
1
530
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
230
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
660
Featured
See All Featured
A designer walks into a library…
pauljervisheath
207
24k
Bash Introduction
62gerente
614
210k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.4k
How to train your dragon (web standard)
notwaldorf
96
6.2k
Navigating Team Friction
lara
188
15k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
110
19k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Adopting Sorbet at Scale
ufuk
77
9.5k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Transcript
ʮ͓ࢄาʯΛͨ݁͠Ռ ࡕਆλΠΨʔε͕༏উͨ݅͠. ࡕਆλΠΨʔε༏উΛه೦ͯ͠PythonͰσʔλੳͨ͠Β ࢥΘͣʮͦΒɺͦ͏Αʯͱೲಘͯ͠͠·ͬͨ. Shinichi Nakagawa(@shinyorke) 2023/10/01 PyLadies Tokyo
9पه೦ύʔςΟʔ
Who am I ? ʢ͓લ୭Α?ʣ • Shinichi Nakagawa@shinyorke • େख֎ࢿܥITίϯαϧاۀϚωʔδϟʔ
• ຊۀͰSREతͳࣄΛ͍ͯ͠·͢. • ΤϯδχΞతʹԿͰͰ͖Δਓ. • దͳ⽁ωλ͔ΒLTΛ͢ΔΤϯδχΞͷਓ. • ஶ໊ͳٕज़ϒϩάʮLean Baseballʯͷਓ. • ຖ10,000าఔͷʮ͓ࢄาʯ͕՝. ※͓ࢄาͷূڌ݅
PyLadies Tokyo 9प͓ΊͰͱ͏͍͟͝·͢🎉 ʢ9ܦͬͯ͠·ͬͨͷ͔…ͳ͍ͭʣ
͏Ұ͓ͭΊͰ͍ͨࣄ͕ ͋Γ·͢ΑͶʁ🐯
ࡕਆλΠΨʔε, ηɾϦʔά༏উ͓ΊͰͱ͏͍͟͝·͢🎉 2005Ҏདྷ18ͿΓͷ༏উ🐯
334 ʲ౾ࣝʳ͓ೃછΈͷͪ͜Βͷࣈ18લͷ༏উ͕ΩοΧέͰര.
18ͿΓʹʮ༏উʯΛ Ϳ͔ͪ·ͨ͠ࡕਆλΠΨʔε ݁ہԿ͕ྑ͔ͬͨͷ͔🤔
ࡕਆλΠΨʔε༏উͷཧ༝ʢͲΕਖ਼ղʣ 1. ໊কʮԬాজʯ௨শʮͲΜͰΜʯͷಜ෮ؼ. →18લͷ༏উԬాಜ&ʮͦΒɺͦ͏Αʯͱೲಘߦ໊͘ࡃ. 2. ࣆJAPAN͕༏উͨ͠WBCʹελϝϯڃͷબखΛग़͍ͯ͠ͳ͔ͬͨ. ࡕਆ͔Βதͱ౬ઙͷΈ͔ͭ͞΄Ͳग़ճଟ͘ͳ͍. 3.
ʮ͓ࢄาେࣄʯʮ໎ͬͨΒา͚ʯͱ͍͏ҙࣝͷժੜ͑. ۩ମతʹʮ࢛ٿʢϑΥΞϘʔϧʣʯΛࢁબΜͩ.
ʮʰ͓ࢄาେࣄʱʰ໎ͬͨΒา͚ʱͱ͍͏ҙࣝͷժੜ͑ʯ ͜Ε͕ࡕਆλΠΨʔε༏উͷͬͱΒ͍͠ཧ༝ͩͱσʔλݴͬͯ·ͨ͠.
ࡕਆͷεʔύʔυϥΠͳʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. ͳ͓ٿʹ͓͚Δʮ͓ࢄาʯʮ࢛ٿʢϑΥΞϘʔϧʣʯͷࣄ. ※εϥϯάతʹʮࢄาʯͱಡΜͰ͍·͢ʢʮา͔ͤΔʯͱ͔ݴ͏ʣ.
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶃ όολʔࡾৼͯ͠ ͍͍͔Β ʮۃʹ͓ࢄาʯ ͠ͳ͍͞. ࡾৼ͍͍͔ͯ͠Βา͚. 11
ʮދଧઢʯվΊʮ”า”ଧઢʯ • 2023ͷࡕਆλΠΨʔε, νʔϜͱ࢛ͯ͠ٿͷ͕ΊͪΌͪ͘Όଟ͍. • ηɾϦʔάͲ͜Ζ͔ϓϩٿશମͰΠέͯΔग़ྥͷߴ͞. • Ұํ, ࢛ٿΛऔΓʹߦ͘ͷʹͭͨΊࡾৼ૿͍͑ͯΔ.
11ଧ੮ʹ1ճ͓ࢄา͢ΔࡕਆλΠΨʔε͞Μ༏लʢϦʔά1Ґʣ. ࠷ԼҐதυϥΰϯζΑΓ1.5ഒͷϖʔεͰʮ͓ࢄาʯΛྔ࢈.
Ұํ, ࡾઢͷ۶ࢦͰ4.5ଧ੮ʹҰࡾৼ͍ͯ͠ΔʢϦʔάϫʔετʣ. ܭࢉ্ελϝϯͷશଧऀ͕ࢼ߹தʹ1ճࡾৼ͍ͯ͠Δࣄʹ.
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄา͢ΔॱʹฒͨϞϊ. ࡕਆૉΒ͍͠, Ұํʮྩͷถ૽ಈʯͷத͞Μ(ry
ࡕਆλΠΨʔε͓ࢄาͷྲّྀᶄ ϐονϟʔࡾৼΛ औΒͳ͍͍͔ͯ͘Β ʮࢄาΛࢭΊΖʯ. ૬खͷଧऀΛྥʹग़͔͢Βͣ. 16
૬खͷʮࢄาʯΛઈରʹࢭΊΔखਞ. • 2023ͷࡕਆλΠΨʔε, νʔϜͱͯ͠खͷ༩࢛ٿ͕গͳ͍. • ༩࢛ٿ͕গͳ͍ = ૬खʹ࢛ٿʢࢄาʣΛ͍ͤͯ͞ͳ͍. • ͦͦ͜͜ࡾৼऔΕ͓ͯΓ,
ࡕਆखਞͷ༏ल͕͞Θ͔Δ.
༏लͳࡕਆखਞ, ૬खʹ࢛ٿʢࢄาʣΛ࠷༩͍͑ͯͳ͍ʢϦʔά1Ґʣ. ૬खଧऀʹແବͳ࢛ٿΛग़͞ͳ͍ͱ͍͏పఈͨ͠ํ.
༏लͳࡕਆखਞ, ૬ख͔Βͦͦ͜͜ࡾৼΛୣ͏༷ʢϦʔά4Ґʣ. ࢛ٿ͕ݮΔͱ͍͏͜ͱࡾৼΛऔΕͳ͍ࣄʹܨ͕Δ͕ҧͬͯͨ…ੌ͍🐯
2ͭͷάϥϑΛ͚ͬͭͯ͘ࢄาͤ͞ͳ͍ॱʹฒͨϞϊ. ࡕਆ͕ૉΒ͍͕͠, DeNAͷʮࡾৼͨ͘͞ΜऔΔʯʮ࢛ٿগͳ͍ʯ͔͍͍ͬ͜.
???ʮPythonͷ͕ແ͍͡Όͳ͍͔ʁ͍͍͔͛Μʹ͠Ζʯ
ࠓͷσʔλ શ෦PythonͰ ͍͍ײ͡ʹ🐍 େͨ͠ίʔυ͡Όͳ͍ͷͰͥͻਅࣅͯͬͯ͠Έͯ. https://gist.github.com/Shinichi-Nakagawa/3ca01932532ba41ceaef94bd722107b9 NPBͷWebαΠτΛ εΫϨΠϐϯά Google ColabͰ γϡοͱՄࢹԽ.
ʲ݁ʳࡕਆλΠΨʔεʮ͓ࢄาʯͷྲّྀ • όολʔࡾৼ͍͍͔ͯ͠Βʮۃʹ͓ࢄาʯ͠ͳ͍͞. • ϐονϟʔࡾৼΛऔΒͳ͍͍͔ͯ͘ΒʮࢄาΛࢭΊΖʯ. • ͳ͓, ࢛ٿ͕૿͑Δͱࡾৼ૿͑ΔʢʣͳͷͰ(ry ͓Θ͔Γ͍͚ͨͩͨͩΖ͏͔?
͝ਗ਼ௌ͋Γ͕ͱ͏͍͟͝·ͨ͠🐯