Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
イベントストリーミング入門 〜Apache Kafkaを活用した大規模リアルタイムデータ処理〜
Search
Akio SHIMIZU
July 30, 2022
Technology
0
980
イベントストリーミング入門 〜Apache Kafkaを活用した大規模リアルタイムデータ処理〜
OSC Kyoto Online 2022の発表資料です。初心者向けにApache Kafkaの概要を解説しています。
Akio SHIMIZU
July 30, 2022
Tweet
Share
More Decks by Akio SHIMIZU
See All by Akio SHIMIZU
Apache Kafka最新アップデート (2023年6月16日版)
shmza
2
1.3k
イベントストリーミング入門 〜Apache Kafkaを活用した大規模リアルタイムデータ処理〜
shmza
0
910
Other Decks in Technology
See All in Technology
AIのグローバルトレンド 2025 / ai global trend 2025
kyonmm
PRO
1
140
ファッションコーディネートアプリ「WEAR」における、Vertex AI Vector Searchを利用したレコメンド機能の開発・運用で得られたノウハウの紹介
zozotech
PRO
0
330
開発 × 生成AI × コミュニケーション:GENDAの開発現場で感じたコミュニケーションの変化 / GENDA Tech Talk #1
genda
0
230
AIに目を奪われすぎて、周りの困っている人間が見えなくなっていませんか?
cap120
1
640
人に寄り添うAIエージェントとアーキテクチャ #BetAIDay
layerx
PRO
9
2.2k
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
550
家族の思い出を形にする 〜 1秒動画の生成を支えるインフラアーキテクチャ
ojima_h
3
1.1k
Jamf Connect ZTNAとMDMで実現! 金融ベンチャーにおける「デバイストラスト」実例と軌跡 / Kyash Device Trust
rela1470
1
200
結局QUICで通信は速くなるの?
kota_yata
6
6.4k
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
170
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
170
【新卒研修資料】数理最適化 / Mathematical Optimization
brainpadpr
27
13k
Featured
See All Featured
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
47
9.6k
Fireside Chat
paigeccino
38
3.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.4k
GraphQLとの向き合い方2022年版
quramy
49
14k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
Site-Speed That Sticks
csswizardry
10
770
Designing for Performance
lara
610
69k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
Designing Experiences People Love
moore
142
24k
Balancing Empowerment & Direction
lara
1
540
What's in a price? How to price your products and services
michaelherold
246
12k
Transcript
イベントストリーミング入門 〜Apache Kafkaを活用した大規模リアルタイムデータ処理〜 2022年7月29日 Confluent Japan合同会社 シニアソリューションエンジニア 清水 亮夫
2 世界は変わってきています
新しいビジネスの現実 テクノロジーこそがビジネス イノベーションが必要なのは 生き残るため 昨日のデータ = 障害 モダンなリアルタイムデータ インフラストラクチャが必要 テクノロジーは
サポート機能 イノベーションが必要なのは 成長のため “必要十分”なデータの鮮度は 昨日のデータ
「店舗」はソフトウェアに
「銀行」はソフトウェアに
「タクシー」はソフトウェアに 2 min
「自動車」はソフトウェアに
この変革を可能にするもの は何でしょうか。
クラウド 機械学習 モバイル Data in Motion 意思決定の再考 ユーザーエクスペ リエンスの再考 データの再考
データセンターの 再考
Data at RestはData in Motionに変わっていく 輸送機関 リアルタイムのセンサー 診断 運転手-乗客のマッチング 到着予想時刻のリアル
タイム更新 銀行 不正使用の検出 取引・リスクの管理 モバイルアプリ / 顧客体験の向上 小売 リアルタイム在庫管理 リアルタイムPOS レポート パーソナライゼーション 娯楽 リアルタイムの リコメンデーション パーソナライズされた お薦め アプリ内決済
Data in Motionとは?
Data in Motionは エンタープライズ企業の 中枢神経系 Apache Kafka® はそのテクノロジー
「イベント」とはビジネスで起きていること 輸送機関 今岡さんの車の TPMSセンサーが午前 7時11分にタイヤの空気圧低下を検 知した Kafka 銀行 金曜日の午後3時47分に赤星さんが藤本さんに 3万円送金した
Kafka 小売 金本さんが注文したデジタルカメラが午前 9時10分に配送された Kafka
Key Value
中枢神経系 一連のイベント・ストリームとしての業務, powered by Kafka 在庫情報 配送 レポート 注文 フロントエ
ンド 小売業の例
Data in Motionの興盛 2010 Apache Kafka Confluentの創業者によって Linkedinで生まれる 2014 2021
80% のFortune 100 企業がApache Kafkaを信頼し、採 用
Apache Kafka® とは?
Apache Kafkaのコア機能 01 一連のイベントを Publish & Subscribe する 02 イベント・ストリーム
を保存する 03 イベント・ストリーム を処理 & 解析する
“Everything is just a series of events.” - Apache Kafka
同じKafkaコインの表面と裏面 Client Broker
Producer: 最初のクライアント ポリシー 決済処理 アプリケーション テレメトリーデータ 書込み
Kafka Broker: 繊細だけどパワフル ローカルストレージ リテンション時間 書込み
Consumer: もう一方のクライアント データレコード レポート ダッシュボード 分析 後続処理 永遠に 繰り返す ポーリング
24 • 長いブロックコマンドの連鎖を 断ち切る • 同期アクションと非同期 アクションを区別する • immutableなイベントレベルの ログによるトレーサビリティの
維持 ProducerとConsumerを分離する
Broker
Brokerの基本 • ProducerはイベントをBrokerに送信 • Brokersはイベントを受信して蓄積 • Kafka Clusterは複数のBrokerを持つことが できる •
それぞれのBrokerは複数のTopic、 パーティションを管理
Brokerのレプリケーション Topic, パーティションの 論理セット
Topic • 類似イベントを格納する名前付きコンテナ ◦ システムには多くのTopicが存在する ◦ Topic間でデータが重複することもできる • イベントの耐久性のあるログ ◦
追記(Append)のみ ◦ オフセットによるシークのみ可能で、インデックス化はされない • イベントは不変 (immutable)
Topicのリテンション・ポリシー イベントをどれだけの期間保持する必要があるか ? • どれだけの期間 (デフォルト: 1週間) • Topic単位で設定 ◦
もしくはBorokerのデフォルト値を使用 • 業務要件による決定 • コスト要因 • コンプライアンス要因 (例: GDPR)
Topicのコンパクション
Topic、パーティション、セグメント
セグメントの中身 - ストリーム 無限に続く一連のイベント 過去 未来 現在 ストリーム イベント
イベントの中身
クライアント
Producerのデザイン
Producerの保証
送達の保証
Javaによる基本 的なProducer
パーティショニングの戦略 なぜパーティショニングするのか ? • Consumerは何らかのキーで集計または結合する必要がある • Consumerは順序の保証が必要 • ストレージの効率化やインデックス作成のためのデータの集中化
Partition 0 Partition 1 Partition 2
Partition 0 Partition 1 Partition 2
Partition 0 Partition 1 Partition 2 1 4 7 2
5 8 3 6 9 #
Partition 0 Partition 1 Partition 2 1 2 3 4
5 7 6 8 9 #
Consumerのオフセット ここまで 読み込んだ
Consumerグループ 同じ グループID 自動 ロードバランス
Consumerの リバランス リバランス発生 リバランス発生 Consumer 追加! Consumer 削除!
.NET/C#による 基本的な Consumer
特別なクライアント
Sink Source KAFKA STREAMS KAFKA CONNECT KAFKA CONNECT Your App
Kafka ConnectとKafka Streams
ストリーム処理のアーキテクチャをシンプルに DB CONNECTOR CONNECTOR APP APP DB STREAM PROCESSING CONNECTOR
APP DB 2 3 4 現状では、3から5にわたる分散システムの構築・インテグレーション・管理が必要 1
KSQL は、イベントの取得、ストリーム処理、プッシュ/プルクエリの両方を単一のソリューション として提供します ストリーム処理のアーキテクチャをシンプルに DB APP APP DB PULL PUSH
CONNECTORS STREAM PROCESSING STATE STORES KSQL 1 2 APP
1つのシステムで2種類のクエリに対応: • Pushクエリ リアルタイムで変化するクエリ結果を 購読 (subscribe)する (ドライバーはどこにいて、到着予測時間はいつ?) • Pullクエリ :
情報のポイントインタイムでの検索 (乗車運賃はいくら? ドライバーの名前は?) ストリーム処理のアーキテクチャをシンプルに
ストリームの世界に入門する敷居を下げる Kafka利用者の人口分布 コーディングの洗練度 コアJava開発者 Java/Scalaを使用しないコア開発者 データエンジニア、アーキテクトDevOps/SRE streams BI分析者
ハンズオンのご案内
7/30(土) 14時からハンズオンを行います! ZoomのURLが不明な際は、OSPNのSlackで 清水宛にDMください
ありがとうございました! Confluent: confluent.cloud Developer Site: https://developer.confluent.io/
None