Upgrade to Pro — share decks privately, control downloads, hide ads and more …

モンテカルロレイトレーシング:アルゴリズム超概略 / Super Simple Overview of Monte Carlo Ray Tracing Algorithms

shocker_0x15
September 06, 2014

モンテカルロレイトレーシング:アルゴリズム超概略 / Super Simple Overview of Monte Carlo Ray Tracing Algorithms

レイトレ合宿2!!のセミナーで使用した資料です。
スライドの趣旨:各手法の理解ではなく、どんな手法が存在するかを知ってもらうことと、その概要。
主な対象者:モンテカルロ積分の基礎を理解しており、簡単なパストレーシングなどの実装経験がある方。

紹介している手法:
Path Tracing, Next Event Estimation, Multiple Importance Sampling, Bidirectional Path Tracing, Metropolis Light Transport, Primary Sample Space MLT, Photon Mapping, PPM, SPPM, PPPM, AMCMCPPM, Unified Path Sampling (VCM), Path Space Regularization, Multiplexed MLT

Twitter: @Shocker_0x15

shocker_0x15

September 06, 2014
Tweet

More Decks by shocker_0x15

Other Decks in Technology

Transcript

  1. MONTE CARLO RAY TRACING!
    ΞϧΰϦζϜ௒ུ֓
    ౉෦৺!
    Twitter: @Shocker_0x15!
    ϨΠτϨ߹॓
    https://sites.google.com/site/raytracingcamp2/

    View Slide

  2. ϞϯςΧϧϩੵ෼

    View Slide

  3. I = f (x)dx
    a
    b
    ∫ I ≈
    1
    N
    f (xi
    )
    p(xi
    )
    i=1
    N

    ਪఆ஋͸෼ࢄΛ࣋ͭ!
    ظ଴஋͸ਅ஋ʹҰக͢Δ
    ϞϯςΧϧϩਪఆؔ਺

    View Slide

  4. f (x)
    x
    a b
    p(x)
    x
    a b
    I ≈
    1
    N
    f (xi
    )
    p(xi
    )
    i=1
    N
    ∑ ೚ҙͷ1%'͕࢖༻Մೳ

    View Slide

  5. I ≈
    1
    N
    f (xi
    )
    p(xi
    )
    i=1
    N

    ॏ఺తαϯϓϦϯά
    f (x)
    x
    a b
    p(x)
    f (x)
    x
    a b
    p(x)
    ଎͍ऩଋ(௿෼ࢄ) ஗͍ऩଋ(ߴ෼ࢄ)
    ཧ૝తͳPDFΛٻΊΔ͜ͱ͸ࠔ೉

    View Slide

  6. άϩʔόϧΠϧϛωʔγϣϯ
    Χϝϥʗ؟
    ޫݯ
    Χϝϥʹ౸ୡ͢Δ͋ΒΏΔޫܦ࿏ͷد༩Λੵ෼͢Δ
    I = f (x)dµ(x)
    Ω

    View Slide

  7. Χϝϥʗ؟
    ޫݯ
    ܦ࿏
    I ≈
    1
    N
    f (xi
    )
    p(xi
    )
    i=1
    N
    ∑ f (xi
    ): ܦ࿏ʹԊͬͨد༩
    xi : ϥϯμϜͳܦ࿏
    ϞϯςΧϧϩੵ෼Λ࢖ͬͯղ͘
    p(x
    i
    ): ϥϯμϜͳܦ࿏Λੜ੒͢ΔPDF

    View Slide

  8. PATH TRACING

    View Slide

  9. ೖࣹํ޲Λ֬཰తʹαϯϓϧɺޫݯʹ౰ͨΕ͹د༩͕ͱΕΔ
    ࢹ఺͔Βޫ༌ૹܦ࿏ΛτϨʔε
    ͳ͔ͳ͔౰ͨΒͳ͍ʂ

    View Slide

  10. NEXT EVENT ESTIMATION
    ޫݯ্ͷ఺Λ໌ࣔతʹαϯϓϧɺࢹઢܦ࿏ͱ઀ଓ͢Δ

    View Slide

  11. MULTIPLE IMPORTANCE SAMPLING

    ྫɿ௚઀র໌ͷਪఆ

    View Slide

  12. Light
    ޫ୔BSDF
    I ≈
    1
    N
    f (xBSDF, i
    )
    pBSDF
    (xBSDF, i
    )
    i=1
    N

    #4%'ͷد༩ʹԊͬͨॏ఺తαϯϓϦϯά
    #4%'د༩ʹԊͬͯೖࣹํ޲αϯϓϧɿߴ͍֬཰Ͱߴ͍د༩
    à௿͍෼ࢄ ޫݯ͕ྑ͍৔ॴʹ͋Ε͹

    View Slide

  13. Light
    ֦ࢄBSDF
    I ≈
    1
    N
    f (xBSDF, i
    )
    pBSDF
    (xBSDF, i
    )
    i=1
    N

    #4%'ͷد༩ʹԊͬͨॏ఺తαϯϓϦϯά
    #4%'د༩ʹԊͬͯೖࣹํ޲αϯϓϧɿ௿͍֬཰Ͱߴ͍د༩
    àߴ͍෼ࢄ ͨ·ʹ͔͠౰ͨΒͳ͍ͨΊ

    View Slide

  14. Light
    ֦ࢄBSDF
    I ≈
    1
    N
    f (x
    light, i
    )
    p
    light
    (x
    light, i
    )
    i=1
    N

    ޫݯ্ͷҐஔͷॏ఺తαϯϓϦϯά
    ޫݯ্ͷҐஔΛαϯϓϧͯ͠઀ଓɿߴ͍֬཰Ͱߴ͍د༩
    à௿͍෼ࢄ #4%'ͷ஋͕ൺֱతҰ༷Ͱ͋Ε͹

    View Slide

  15. Light
    ޫ୔BSDF
    I ≈
    1
    N
    f (x
    light, i
    )
    p
    light
    (x
    light, i
    )
    i=1
    N

    ޫݯ্ͷҐஔͷॏ఺తαϯϓϦϯά
    ޫݯ্ͷҐஔΛαϯϓϧͯ͠઀ଓɿ௿͍֬཰Ͱߴ͍د༩
    àߴ͍෼ࢄ #4%'ͷ஋͕ඇҰ༷ͳͨΊ

    View Slide

  16. ޫݯ໘ͷαϯϓϦϯά
    #4%'ͷαϯϓϦϯά

    View Slide

  17. Multiple Importance Sampling
    I ≈
    1
    N
    f (xBSDF, i
    )
    pBSDF
    (xBSDF, i
    )
    i=1
    N
    ∑ I ≈
    1
    N
    f (xlight, i
    )
    plight
    (xlight, i
    )
    i=1
    N

    I ≈
    1
    N
    wBSDF
    (xBSDF, i
    )
    f (xBSDF, i
    )
    pBSDF
    (xBSDF, i
    )
    + wlight
    (xlight, i
    )
    f (xlight, i
    )
    plight
    (xlight, i
    )
    "
    #
    $
    %
    &
    '
    i=1
    N

    View Slide

  18. w
    BSDF
    (x) =
    p
    BSDF
    (x)
    p
    BSDF
    (x)+ p
    light
    (x)
    wlight
    (x) =
    plight
    (x)
    pBSDF
    (x)+ plight
    (x)
    I ≈
    1
    N
    wBSDF
    (xBSDF, i
    )
    f (xBSDF, i
    )
    pBSDF
    (xBSDF, i
    )
    + wlight
    (xlight, i
    )
    f (xlight, i
    )
    plight
    (xlight, i
    )
    "
    #
    $
    %
    &
    '
    i=1
    N

    .*4΢ΣΠτ
    όϥϯεώϡʔϦεςΟοΫ

    View Slide

  19. .*4ʹΑΔ΢ΣΠτ഑෼
    .VMUJQMF*NQPSUBODF4BNQMJOH

    View Slide

  20. BIDIRECTIONAL PATH TRACING!
    VEACH-STYLE

    View Slide

  21. .*4ΛҰൠԽ
    15ʹ͓͚Δ
    ௚઀র໌ͷ৔߹ʜ
    ೚ҙͷܦ࿏ʹҰൠԽʂ

    View Slide

  22. ࢹઢαϒύεͱޫݯαϒύεΛੜ੒ɺ֤௖఺Λ઀ଓ

    View Slide

  23. (2,2)
    (3,1) (1,3)
    ྫ௕͞ MIS
    ˎ

    ΋͋ΓಘΔ

    View Slide

  24. #JEJSFDUJPOBM1BUI5SBDJOH
    1BUI5SBDJOH
    ؒ઀র໌͕ࢧ഑తͳγʔϯʹ͓͍ͯ΋ϩόετ

    View Slide

  25. METROPOLIS LIGHT TRANSPORT

    View Slide

  26. ௨ৗͷ.$35ͷ໰୊఺ ྫɿ1BUI5SBDJOH

    ͘͝Ұ෦ͷྖҬͷޫ༌ૹܦ࿏͕ॏཁͱͳΔγʔϯʹऑ͍!
    ྫɿগ͚ͩ͠։͍ͨυΞ͔Β࿙ΕΔޫɺίʔεςΟΫε͕ओཁͳޫݯ
    ຖճϥϯμϜʹܦ࿏ΛτϨʔεɿ໓ଟʹد༩͕ͱΕͳ͍ʂʂ!

    View Slide

  27. ௨ৗͷ.$35ͷ໰୊఺ ྫɿ1BUI5SBDJOH

    ͘͝Ұ෦ͷྖҬͷޫ༌ૹܦ࿏͕ॏཁͱͳΔγʔϯʹऑ͍!
    ྫɿগ͚ͩ͠։͍ͨυΞ͔Β࿙ΕΔޫɺίʔεςΟΫε͕ओཁͳޫݯ
    ຖճϥϯμϜʹܦ࿏ΛτϨʔεɿ໓ଟʹد༩͕ͱΕͳ͍ʂʂ!

    View Slide

  28. ௨ৗͷ.$35ͷ໰୊఺ ྫɿ1BUI5SBDJOH

    ͘͝Ұ෦ͷྖҬͷޫ༌ૹܦ࿏͕ॏཁͱͳΔγʔϯʹऑ͍!
    ྫɿগ͚ͩ͠։͍ͨυΞ͔Β࿙ΕΔޫɺίʔεςΟΫε͕ओཁͳޫݯ
    ຖճϥϯμϜʹܦ࿏ΛτϨʔεɿ໓ଟʹد༩͕ͱΕͳ͍ʂʂ!

    View Slide

  29. ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻
    طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒!
    د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

    View Slide

  30. ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻
    طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒!
    د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

    View Slide

  31. ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻
    طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒!
    د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

    View Slide

  32. ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻
    طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒!
    د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ

    View Slide

  33. ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻
    طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒!
    د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ
    د༩àغ٫

    View Slide

  34. ޫ༌ૹ΁ͷϝτϩϙϦεαϯϓϦϯάͷద༻
    طଘͷ༗ޮͳύε΁มҟΛՃ͑ͯ৽ͨͳύεΛੜ੒!
    د༩͕খ͘͞ͳΔมҟ͸֬཰తʹغ٫͞ΕΔ
    ݩͷܦ࿏ʹ໭͢

    View Slide

  35. Bidirectional Path Tracing

    View Slide

  36. Metropolis Light Transport

    View Slide

  37. PRIMARY SAMPLE SPACE MLT

    View Slide

  38. n࣍ݩͷ0 ~ 1ཚ਺!
    㱨 Primary Sample Space
    n࣍ݩ௒ཱํମ
    0 1
    0
    1
    ܦ࿏ͷૉʹͳΔཚ਺ϨϕϧͰมҟΛՃ͑Δ
    144ͷ࠲ඪͱܦ࿏͸
    ҰରҰରԠ 15΍#15ʹΑΔϚοϐϯά

    ΦϦδφϧ.-5ΑΓ࣮૷͕؆୯͔ͭϩόετ ͱظ଴͞ΕΔ

    View Slide

  39. n࣍ݩͷ0 ~ 1ཚ਺!
    㱨 Primary Sample Space
    n࣍ݩ௒ཱํମ
    0 1
    0
    1
    ܦ࿏ͷૉʹͳΔཚ਺ϨϕϧͰมҟΛՃ͑Δ
    144ͷ࠲ඪͱܦ࿏͸
    ҰରҰରԠ 15΍#15ʹΑΔϚοϐϯά

    ΦϦδφϧ.-5ΑΓ࣮૷͕؆୯͔ͭϩόετ ͱظ଴͞ΕΔ

    View Slide

  40. n࣍ݩͷ0 ~ 1ཚ਺!
    㱨 Primary Sample Space
    n࣍ݩ௒ཱํମ
    0 1
    0
    1
    ܦ࿏ͷૉʹͳΔཚ਺ϨϕϧͰมҟΛՃ͑Δ
    144ͷ࠲ඪͱܦ࿏͸
    ҰରҰରԠ 15΍#15ʹΑΔϚοϐϯά

    ΦϦδφϧ.-5ΑΓ࣮૷͕؆୯͔ͭϩόετ ͱظ଴͞ΕΔ

    View Slide

  41. PHOTON MAPPING

    View Slide

  42. View Slide

  43. ϑΥτϯτϨʔγϯά

    View Slide

  44. ϑΥτϯτϨʔγϯά

    View Slide

  45. ϑΥτϯτϨʔγϯά

    View Slide

  46. ϑΥτϯτϨʔγϯά ີ౓ਪఆ

    View Slide

  47. ϑΥτϯτϨʔγϯά ີ౓ਪఆ

    View Slide

  48. ϑΥτϯτϨʔγϯά ີ౓ਪఆ
    ϑΥτϯϚοϐϯά͸ܦ࿏ΛΏΔ͘઀ଓ͢Δ͜ͱʹΑͬͯ!
    ܦ࿏Λ࠶ར༻ɺଟ༷ͳܦ࿏Λ·ͱΊͯܭࢉ

    View Slide

  49. PROGRESSIVE PHOTON MAPPING

    View Slide

  50. ϑΥτϯϚοϐϯάͷ໰୊఺
    ਖ਼֬ͳً౓ਪఆʹ͸

    ແݶখͷ୳ࡧ൒ܘʹແݶݸͷϑΥτϯͱ͍͏৚͕݅ඞཁ
    ϝϞϦ΍ܭࢉίετ໘ͰෆՄೳʂ

    View Slide

  51. PROGRESSIVE PHOTON MAPPING : PPM
    ϑΥτϯτϨʔγϯάΛ܁Γฦͯ͠౷ܭྔΛߋ৽
    ͋Β͔͡Ίً౓ܭࢉ఺Λੜ੒͓ͯ͘͠
    ౷ܭߋ৽ˍ൒ܘॖݮ

    View Slide

  52. ແݶখͷ൒ܘʹແݶݸͷϑΥτϯͱ͍͏৚݅ʹ

    ϓϩάϨογϒʹۙͮ͘
    ϑΥτϯͷ୳ࡧ൒ܘΛ൓෮͝ͱʹॖݮ
    ൒ܘॖݮʗ౷ܭྔͷߋ৽

    View Slide

  53. STOCHASTIC PPM

    View Slide

  54. 11.ͷ໰୊఺
    ޫ୔൓ࣹ ΞϯνΤΠϦΞε Ϟʔγϣϯϒϥʔ ඃࣸքਂ౓
    ͜ΕΒͷޮՌ͸ฏۉ์ًࣹ౓ਪఆΛඞཁͱ͢Δ
    ਖ਼֬ͳਪఆʹ͸ແݶͷً౓ਪఆ఺͕ඞཁ
    ྫɿΞϯνΤΠϦΞε
    ɹɹϐΫηϧ಺ͷαϯϓϧ఺
    ྫɿඃࣸքਂ౓
    ɹɹϨϯζ্ͷαϯϓϧ఺

    View Slide

  55. SPPM
    ྖҬ಺Ͱ୳ࡧ൒ܘͳͲͷ౷ܭྔΛڞ༗
    ޫ୔൓ࣹ
    ൓ࣹํ޲
    ΞϯνΤΠϦΞε
    ϐΫηϧ
    Ϟʔγϣϯϒϥʔ
    γϟολʔ࣌ؒத
    ඃࣸքਂ౓
    Ϩϯζ্
    શͯΛ·ͱΊΔ͜ͱͰ
    ฏۉً౓ͷਪఆ஋ΛϓϩάϨογϒʹਅ஋ʹ͚ۙͮΒΕΔ

    View Slide

  56. ً౓ܭଌ఺΋ຖճ࡞Γ௚͢
    ϐΫηϧதͷҐஔ΍ɺϨϯζ্ͷҐஔɺ࣌ؒɺޫ୔൓ࣹํ޲
    ͳͲΛຖճมߋ͢Δ
    ڞ༗౷ܭߋ৽ˍ൒ܘॖݮ

    View Slide

  57. Bidirectional Path Tracing

    View Slide

  58. Progressive Photon Mapping

    View Slide

  59. Stochastic PPM

    View Slide

  60. PPM: PROBABILISTIC APPROACH

    View Slide

  61. 411.ͷҰൠԽΛ͞Βʹਪ͠ਐΊͨख๏
    ൒ܘΛঃʑʹখ͍ͯͬͨ͘͞͠
    ΦϦδφϧͷϑΥτϯϚοϐϯάͷ݁ՌΛॏͶ߹ΘͤΔ͚ͩʂ
    ൒ܘॖݮ

    View Slide

  62. ADAPTIVE !
    MARKOV CHAIN MONTE CARLO!
    PPM

    View Slide

  63. 11. 411.
    ͷ໰୊఺
    ՄࢹྖҬ
    ෆՄࢹͳϑΥτϯܦ࿏

    ʹແବͳܭࢉ
    ༗ޮͳϑΥτϯܦ࿏

    View Slide

  64. AMCMCPPM = PPM + PSSMLT + α
    ॳظͷՄࢹܦ࿏

    View Slide

  65. AMCMCPPM = PPM + PSSMLT + α
    ॳظͷՄࢹܦ࿏
    ෆՄࢹà غ٫

    View Slide

  66. AMCMCPPM = PPM + PSSMLT + α
    ॳظͷՄࢹܦ࿏

    View Slide

  67. AMCMCPPM = PPM + PSSMLT + α
    ॳظͷՄࢹܦ࿏
    Մࢹà ࠾୒

    View Slide

  68. AMCMCPPM = PPM + PSSMLT + α

    View Slide

  69. AMCMCPPM = PPM + PSSMLT + α
    Primary Sample Space

    தͷมҟΛ༻͍ͯ

    ܦ࿏Λੜ੒

    View Slide

  70. AMCMCPPM = PPM + PSSMLT + α
    Primary Sample Space

    தͷมҟΛ༻͍ͯ

    ܦ࿏Λੜ੒
    มҟύϥϝλʔͷ
    ࣗಈௐ੔΋ߦ͏౳
    આ໌ল͖·͢

    + α

    View Slide

  71. ".$.$11.
    411.

    View Slide

  72. SPPM
    AMCMCPPM
    ஫໨ྖҬ͕૬ରతʹখ͘͞ͳΔ΄Ͳ11.͸ഁ୼͢Δ
    .$.$ͱύϥϝλʔͷࣗಈௐ੔ʹΑΓ
    ".$.$11.͸શͯͷഒ཰Ͱ༏Εͨ݁Ռ

    View Slide

  73. UNIFIED PATH SAMPLING!
    (VERTEX CONNECTION AND MERGING)

    View Slide

  74. BPT
    ޫ୔໘ͷଟ͍γʔϯಘҙ
    4%4ύεۤख
    PPM
    ޫ୔໘ͷଟ͍γʔϯۤख
    4%4ύεಘҙ
    .*4
    ͔͠͠໰୊͕͋Δ
    ྫɿ௕͞ͷܦ࿏ߏங
    BPT
    ܦ࿏ͷ࣍ݩ : A5
    PPM
    ܦ࿏ͷ࣍ݩ : A6
    ܦ࿏ߏஙͷ
    ࣍ݩ͕ҟͳΔ

    View Slide

  75. wBSDF
    (x) =
    pBSDF
    (x)
    pBSDF
    (x)+ plight
    (x)
    MIS΢ΣΠτͷܭࢉʹPDFͷՃࢉΛؚΉ
    ࣍ݩͷҟͳΔྔͷՃࢉ͸ޚ๏౓
    ࠶ܝɿόϥϯεώϡʔϦεςΟοΫ

    View Slide

  76. BPT
    ܦ࿏ͷ࣍ݩ : A5
    ֦ுBPT
    ܦ࿏ͷ࣍ݩ : A6
    Vertex Perturbation
    ࢹઢύεͷ୺఺ΛͣΒͯ͠ޫઢύεͷ୺఺Λ௥Ճ

    Ծ૝తʹPPMͱ࣍ݩΛ߹ΘͤΔ

    View Slide

  77. ֦ு#15ͱ11.ͷ.*4

    View Slide

  78. BATHROOM
    Bidirectional Path Tracing

    View Slide

  79. BATHROOM
    Progressive Photon Mapping

    View Slide

  80. BATHROOM
    Unified Path Sampling

    View Slide

  81. PATH SPACE REGULARIZATION

    View Slide

  82. Specular BRDF Mollified BRDF
    BSDF MOLLIFICATION
    #4%'Λ؇࿨ͯ͠د༩ΛऔΕΔΑ͏ʹ ͨͩ͠CJBTFE

    ൓෮͝ͱʹຊདྷͷ#4%'΁͚͍ۙͮͯ͘
    ʹຊ࣭తʹ͸11.ͷ൒ܘॖݮͱಉ͡
    σΟϑϡʔζ໘ʹ͸ద༻͠ͳ͍àඞཁ࠷௿ݶͷόΠΞε

    View Slide

  83. Original MLT

    View Slide

  84. AMCMCPPM

    View Slide

  85. VCM(UPS)

    View Slide

  86. Regularized MLT

    View Slide

  87. Regularized MLT + ME

    View Slide

  88. MULTIPLEXED MLT

    View Slide

  89. 144.-5Ͱ͸ͭͷఏҊ෼෍ͱ࠾୒ɾغ٫Λ૊Έ߹Θͤͯ
    ໨ඪ෼෍ ܦ࿏ͷը૾΁ͷد༩
    Λୡ੒͢Δ
    ఏҊ෼෍ɿ
    #15౳ʹΑΔͭͷϚοϐϯά
    #15౳Ͱ࣮ݱ͞ΕΔϚοϐϯά ఏҊ෼෍
    ͕͋·Γྑ͘ͳ͍
    àغ٫͕૿͑Δ

    View Slide

  90. ఏҊ෼෍ɿ
    ෳ਺ͷϚοϐϯάͷࠞ߹
    144಺ͷมҟʹՃ͑ͯϚοϐϯάͷมߋ΋ߦ͏
    PRIMARY SPACE SERIAL TEMPERING

    View Slide

  91. PSSMLT

    View Slide

  92. Original MLT

    View Slide

  93. Multiplexed MLT

    View Slide

  94. ͓ΘΓʹ
    ຊεϥΠυͰ৮Εͨͷ͸਺͋Δख๏ͷҰ෦
    ϘϦϡʔϜϨϯμϦϯάʹؔͯ͠͸Ұ੾৮Εͯͳ͍
    Energy Redistribution Path Tracing / Bidirectional Photon Mapping / !
    Manifold Exploration Path Tracing / Replica Exchange Light Transport / !
    Population Monte Carlo - ER / Noise Aware MLT / !
    Bidirectional Light Cuts / Gradient-domain MLT …
    ࠷৽ख๏͸جຊతʹ.*4BOEPS 144
    .-5
    ͷཧ࿦࢖͍ͬͯΔΠϝʔδ

    View Slide

  95. REFERENCES 1/3
    n  [ERPT] CLINE, D., TALBOT, J., AND EGBERT, P. 2005. Energy redistribution path tracing. ACM Trans.
    Graph. (SIGGRAPH Proceedings) 24, 3, 1186–1195.!
    n  [VCM] GEORGIEV, I., KŘIVÁNEK, J., AND SLUSALLEK, P. 2011. Bidirectional light transport with vertex
    merging. In ACM SIGGRAPH Asia 2011 Sketches, 27:1–27:2.!
    n  [SPPM] HACHISUKA, T., AND JENSEN, H. W. 2009. Stochastic progressive photon mapping. In ACM
    SIGGRAPH Asia Papers. ACM, New York, 1–8.!
    n  [AMCMCPPM] HACHISUKA, T., AND JENSEN, H. W. 2011. Robust adaptive photon tracing using photon
    path visibility. ACM Transaction on Graphics 30 (October), 114:1–114:11.!
    n  [MMLT] HACHISUKA, T., KAPLANYAN, A. S., AND DACHSBACHER, C. 2014. Multiplexed Metropolis
    light transport. ACM Trans. Graph. (Proc. of SIGGRAPH 2014) 33, 4.!
    n  [PPM] HACHISUKA, T., OGAKI, S., AND JENSEN, H. W. 2008. Progressive photon mapping. ACM Trans.
    Graph. (Proc. of SIGGRAPH Asia) 27, 5.!
    n  [UPS] HACHISUKA, T., PANTALEONI, J., AND JENSEN, H. W. 2012. A path space extension for robust
    light transport simulation. ACM Trans. Graph. (Proc. of SIGGRAPH Asia) 31, 6 (Nov.).!
    n  [Noise Aware MLT] HOBEROCK, J., AND HART, J. C. 2010. Arbitrary importance functions for Metropolis
    light transport. Comput. Graph. Forum 29, 6, 1993–2003.!
    n  [MEPT] JAKOB, W., AND MARSCHNER, S. 2012. Manifold exploration: a Markov chain Monte Carlo
    technique for rendering scenes with difficult specular transport. ACM Transactions on Graphics (Proc.
    SIGGRAPH) 31, 4, 58:1–58:13.!

    View Slide

  96. REFERENCES 2/3
    n  [PM] JENSEN, H. W. 1996. Global illumination using photon maps. In Proceedings of the Eurographics
    Workshop on Rendering Techniques ’96, Springer-Verlag, London, UK, 21–30.!
    n  [PT] KAJIYA, J. T. 1986. The rendering equation. In Computer Graphics (Proc. of SIGGRAPH).!
    n  [Regularization] KAPLANYAN, A. S., AND DACHSBACHER, C. 2013. Path space regularization for
    holistic and robust light transport. Computer Graphics Forum (Proc. of Eurographics) 32, 2.!
    n  [PSSMLT] KELEMEN, C., SZIRMAY-KALOS, L., ANTAL, G., AND CSONKA, F. 2002. A simple and robust
    mutation strategy for the metropolis light transport algorithm. In Eurographics 2002, vol. 21, 531–540.!
    n  [RELT] KITAOKA, S., KITAMURA, Y., AND KISHINO, F. 2009. Replica exchange light transport. Computer
    Graphics Forum 28, 8, 2330–2342.!
    n  [PPPM] KNAUS, C., AND ZWICKER, M. 2011. Progressive photon mapping: A probabilistic approach.
    ACM Transaction on Graphics 30 (May), 25:1–25:13.!
    n  [PMC-ER] LAI, Y.-C., FAN, S. H., CHENNEY, S., AND DYER, C. 2007. Photorealistic image rendering
    with population Monte Carlo energy redistribution. In In Rendering Techniques 2007 (Proceedings of the
    Eurographics Symposium on Rendering), 287–295.!
    n  [Gradient-domain MLT] LEHTINEN, J., KARRAS, T., LAINE, S., AITTALA, M., DURAND, F., AND AILA, T.
    2013. Gradient-domain Metropolis light transport. ACM Transactions on Graphics (Proc. SIGGRAPH) 32,
    4.!
    n  [MIS, BPT] VEACH, E. 1997. Robust Monte Carlo methods for light transport simulation. PhD thesis,
    Stanford, CA, USA.!

    View Slide

  97. REFERENCES 3/3
    n  [BPM] VORBA, J. 2011. Bidirectional photon mapping. In Proc. of the Central European Seminar on
    Computer Graphics (CESCG ‘11).!
    n  [BLC] WALTER, B., KHUNGURN, P., AND BALA, K. 2012. Bidirectional lightcuts. ACM Transactions on
    Graphics (Proc. SIGGRAPH) 31, 4, 59:1–59:11.!

    View Slide