Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Receiver Operator Characteristic Curve

Receiver Operator Characteristic Curve

はじめての『はじめてのパターン認識』第3章
A first introduction of ROC curve (Section 3.2).

Avatar for Shoh-kudo

Shoh-kudo

June 19, 2019
Tweet

More Decks by Shoh-kudo

Other Decks in Education

Transcript

  1. ϕΠζͷࣝผنଇ ٤Ԏ͍ͯ͠Δਓ͕͍ͨʜ පؾͩͬͨʜ Cd P(Cd |x) = p(x|Cd )P(Cd )

    p(x) ݈߁ͩͬͨ Ch P(Ch |x) = p(x|Ch )P(Ch ) p(x) ࣝผΫϥε = argmax p(x|Ci )P(Ci ) i x !3
  2. ϕΠζͷࣝผنଇ ࣝผΫϥε = argmax p(x|Ci )P(Ci ) i ϵ(x) =

    min [P(Ci |x)] ΫϥεΛޡΔ֬཰ʢස౓ʣ i පؾͩͬͨʜ Cd P(Cd |x) = p(x|Cd )P(Cd ) p(x) ݈߁ͩͬͨ Ch P(Ch |x) = p(x|Ch )P(Ch ) p(x) !4
  3. ϕΠζͷࣝผنଇ පؾͩͬͨʜ Cd ݈߁ͩͬͨ Ch ຊ౰͸݈߁ͩͬͨͷʹ පؾͩͱݴͬͯ͠·ͬͨ ຊ౰͸පؾͩͬͨͷʹ ݈߁ͩͱݴͬͯ͠·ͬͨ ِӄੑ

    ِཅੑ ࣝผڥք !5 ϵ(x) = min [P(Ci |x)] ΫϥεΛޡΔ֬཰ʢස౓ʣ i පؾͰ͋Δ͜ͱΛཅੑͱ͢Δͱ
  4. ࠞಉߦྻ Q O ߦ࿨ Q ਅཅੑ 51 ِӄੑ '/ 151

    '/ O ِཅੑ '1 ਅӄੑ 5' /'1 5/ ࣝผΫϥε ਅͷΫϥε ͜ΕΒͷ஋Λ࢖ͬͯࣝผੑೳΛධՁ͢Δ !7
  5. ࠞಉߦྻ Q O ߦ࿨ Q ਅཅੑ 51 ِӄੑ '/ 151

    '/ O ِཅੑ '1 ਅӄੑ 5' /'1 5/ ࣝผΫϥε ਅͷΫϥε ِཅੑ཰GBMTFQPTJUJWFSBUF FP N = FP FP + TN ӄੑͷ΋ͷΛཅੑͱ൑அׂͨ͠߹ !8
  6. ࠞಉߦྻ Q O ߦ࿨ Q ਅཅੑ 51 ِӄੑ '/ 151

    '/ O ِཅੑ '1 ਅӄੑ 5' /'1 5/ ࣝผΫϥε ਅͷΫϥε ਅཅੑ཰USVFQPTJUJWFSBUF TP P = TP TP + FN ཅੑͷ΋ͷΛਖ਼͘͠ཅੑͱ൑அׂͨ͠߹ !9
  7. ࠞಉߦྻ Q O ߦ࿨ Q ਅཅੑ 51 ِӄੑ '/ 151

    '/ O ِཅੑ '1 ਅӄੑ 5' /'1 5/ ࣝผΫϥε ਅͷΫϥε ద߹཰QSFDJTJPO TP TP + FP ཅੑͱ൑அͨ͠΋ͷͷ͏ͪຊ౰ʹཅੑͰ͋Δׂ߹ !10
  8. ࠞಉߦྻ Q O ߦ࿨ Q ਅཅੑ 51 ِӄੑ '/ 151

    '/ O ِཅੑ '1 ਅӄੑ 5' /'1 5/ ࣝผΫϥε ਅͷΫϥε ࠶ݱ཰SFDBMM TP P = TP TP + FN ໢ཏੑʹؔ͢Δࢦඪ શཅੑͷ͏ͪݕग़Ͱ͖ͨ΋ͷͷׂ߹ !11
  9. ࠞಉߦྻ Q O ߦ࿨ Q ਅཅੑ 51 ِӄੑ '/ 151

    '/ O ِཅੑ '1 ਅӄੑ 5' /'1 5/ ࣝผΫϥε ਅͷΫϥε ਖ਼֬౓BDDVSBDZ TP + TN P + N = TP + TN TP + FP + TN + FN ਖ਼ࣝ͘͠ผׂͨ͠߹ !12
  10. ࠞಉߦྻ Q O ߦ࿨ Q ਅཅੑ 51 ِӄੑ '/ 151

    '/ O ِཅੑ '1 ਅӄੑ 5' /'1 5/ ࣝผΫϥε ਅͷΫϥε '஋'NFBTVSF 2 1 precision + 1 recall ద߹཰ͱ࠶ݱ཰ͷௐ࿨ฏۉ !13
  11. ࠞಉߦྻ ِཅੑ཰GBMTFQPTJUJWFSBUF FP N = FP FP + TN ӄੑͷ΋ͷΛཅੑͱ൑அׂͨ͠߹

    ਅཅੑ཰USVFQPTJUJWFSBUF TP P = TP TP + FN ཅੑͷ΋ͷΛਖ਼͘͠ཅੑͱ൑அׂͨ͠߹ ద߹཰QSFDJTJPO TP TP + FP ཅੑͱ൑அͨ͠΋ͷͷ͏ͪ ຊ౰ʹཅੑͰ͋Δׂ߹ ࠶ݱ཰SFDBMM TP P = TP TP + FN ໢ཏੑʹؔ͢Δࢦඪ શཅੑͷ͏ͪݕग़Ͱ͖ͨ΋ͷͷׂ߹ ਖ਼֬౓BDDVSBDZ TP + TN P + N = TP + TN TP + FP + TN + FN ਖ਼ࣝ͘͠ผׂͨ͠߹ '஋'NFBTVSF 2 1 precision + 1 recall ద߹཰ͱ࠶ݱ཰ͷௐ࿨ฏۉ !14
  12. ࠞಉߦྻ ྫ୊ ద߹཰ͱ࠶ݱ཰͸ͳͥτϨʔυΦϑͷؔ܎ʹ͋Δͷ͔ʁ ໢ཏੑΛ্͛Α͏ͱཅੑͱड͚ೖΕΔ΋ͷΛ૿΍͢ͱ ِཅੑͱ൑அ͢Δ΋ͷ΋૿Ճ͠ɼ݁Ռͱͯ͠ద߹཰͕Լ͕ΔͨΊ ద߹཰QSFDJTJPO TP TP + FP

    ཅੑͱ൑அͨ͠΋ͷͷ͏ͪ ຊ౰ʹཅੑͰ͋Δׂ߹ ࠶ݱ཰SFDBMM TP P = TP TP + FN ໢ཏੑʹؔ͢Δࢦඪ શཅੑͷ͏ͪݕग़Ͱ͖ͨ΋ͷͷׂ߹ !15
  13. ِཅੑ཰GBMTFQPTJUJWFSBUF FP N = FP FP + TN ӄੑͷ΋ͷΛཅੑͱ൑அׂͨ͠߹ ਅཅੑ཰USVFQPTJUJWFSBUF

    TP P = TP TP + FN ཅੑͷ΋ͷΛਖ਼͘͠ཅੑͱ൑அׂͨ͠߹ ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ පؾͷਓ͔݈߁ͳਓͳͲͷαϯϓϧ਺ʹେ͖ͳภΓ͕͋Δ৔߹Ͱ΋ ཅੑӄੑͷ΋ͷ͚ͩͰ࡞ΒΕ͍ͯΔͷͰɼͦΕͧΕӄੑཅੑͷӨڹΛड͚ͳ͍ 30$ۂઢ !16
  14. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ ِཅੑ཰  ਅཅੑ཰  # " $ ࣝผڥք Cp*

    Cn* ཅੑͷ֬཰෼෍ͱӄੑͷ֬཰෼෍ ਅཅੑ཰ɿ੺ ِཅੑ཰ɿ੨ ཅੑʢࠨʣଆͷ ֬཰෼෍ʹ஫໨͢Δ ୈछͷޡΓ ୈछͷޡΓͷ༨ࣄ৅ !17
  15. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ ِཅੑ཰  ਅཅੑ཰  # " $ Cp* Cn*

    ཅੑͷ֬཰෼෍ͱӄੑͷ֬཰෼෍ ࣝผڥք ཅੑʢࠨʣଆͷ ֬཰෼෍ʹ஫໨͢Δ !18 ਅཅੑ཰ɿ੺ ِཅੑ཰ɿ੨ ୈछͷޡΓ ୈछͷޡΓͷ༨ࣄ৅
  16. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ ِཅੑ཰  ਅཅੑ཰  # " $ Cp* Cn*

    ཅੑͷ֬཰෼෍ͱӄੑͷ֬཰෼෍ ࣝผڥք ཅੑʢࠨʣଆͷ ֬཰෼෍ʹ஫໨͢Δ !19 ਅཅੑ཰ɿ੺ ِཅੑ཰ɿ੨ ୈछͷޡΓ ୈछͷޡΓͷ༨ࣄ৅
  17. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ ଛࣦ͕࠷΋খ͘͞ͳΔΑ͏ʹࣝผڥքΛܾΊΔ # " $ ࣝผڥք Cp* Cn* ِཅੑ཰ ਅཅੑ཰

    ཅੑͷྖҬʹ͓͚Δଛࣦ ଛࣦ ਅཅੑ཰ʹ༝དྷ͢Δଛࣦ ଛࣦ ِཅੑ཰ʹ༝དྷ͢Δଛࣦ r(C1 |x) = Σ2 k=1 L1k P(Ck |x) !29
  18. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ ཅੑͷྖҬʹ͓͚Δଛࣦ ଛࣦ ਅཅੑ཰ʹ༝དྷ͢Δଛࣦ ଛࣦ ِཅੑ཰ʹ༝དྷ͢Δଛࣦ r(C1 |x) = Σ2

    k=1 L1k P(Ck |x) r(C1 |x) = L11 P(C1 |x) r(C1 |x) = L12 P(C2 |x) ਖ਼ࣝ͘͠ผͨ͠ͷʹଛࣦʁ - Λʹͯ͠د༩Λখ͘͢͞Δ r(C1 |x) = L12 P(C1 |x) ཅੑͷྖҬʹ͓͚Δ ࠷ऴతͳଛࣦ ଛࣦ͕࠷΋খ͘͞ͳΔΑ͏ʹࣝผڥքΛܾΊΔ !30
  19. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ ӄੑྖҬʹ͓͚Δଛࣦ΋ಉ༷ʹॲཧ͢Δͱɼଛࣦ͸྆ऀͷظ଴஋ΛͱΔ͜ͱͰ r = E[r(x)] = ∫ R1 +R2 min[L12

    P(C2 |x), L21 P(C1 |x)]p(x)dx = ∫ R1 L12 p(x|C2 )P(C2 )dx + ∫ R2 L21 p(x|C1 )P(C1 )dx ΫϥεΛཅੑʢQ ʣɼΫϥεΛӄੑʢO ʣͱ͢Ε͹ r = ∫ p* Lp*n* p(x|Cn* )P(Cn* )dx + ∫ n* Ln*p* p(x|Cp* )P(Cp* )dx = Lp*n* P(Cn* )∫ p* p(x|Cn* )dx + Ln*p* P(Cp* )∫ n* p(x|Cp* )dx = Lp*n* P(Cn* )ϵ2 + Ln*p* P(Cp* )ϵ1 ୈछͷޡΓ ୈछͷޡΓ ଛࣦ͕࠷΋খ͘͞ͳΔΑ͏ʹࣝผڥքΛܾΊΔ !31
  20. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ r = Lp*n* P(Cn* )ϵ2 + Ln*p* P(Cp* )ϵ1

    30$ʹ͋Δɼਅཅੑ཰Џ ͱِཅੑ཰Џ ͰࣜΛॻ͖௚͢ͱ࣍ࣜͷΑ͏ʹͳΔɽ 1 − ϵ1 = Lp*n* P(Cn* ) Ln*p* P(Cp* ) ϵ2 + (1 − r Ln*p* P(Cp* ) ) = αϵ2 + h(r) ͜ͷࣜ͸1 $Q ͱ1 $O ͓Αͼଛࣦ-Q O ͱ-O Q ʹΑͬͯЏ ͷ܏͖͕ܾ·Γɼ ੾ยΛSͷؔ਺ͱͨ͠௚ઢͷํఔࣜͱଊ͑Δ͜ͱ͕Ͱ͖Δɽ ଛࣦ͕࠷΋খ͘͞ͳΔΑ͏ʹࣝผڥքΛܾΊΔ Ͱ͸ɼ༩͑ΒΕͨࣜͷதͰ࠷΋ద੾ͳࣜ͸ͲͷΑ͏ͳܗʹͳΔͩΖ͏͔ʁ ৚݅͸ҎԼͷ௨ΓͰ͋Δɽ min r = max h(r) ௚ઢ͕30$ͱަ఺Λ࣋ͭ ʜଛࣦ࠷খ ʜ͍࣋ͬͯΔσʔλͷ৚݅ͷൣғ !32
  21. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ 1 − ϵ1 = αϵ2 + h(r) ଛࣦ͕࠷΋খ͘͞ͳΔΑ͏ʹࣝผڥքΛܾΊΔ min

    r = max h(r) ௚ઢ͕30$ͱަ఺Λ࣋ͭ ʜଛࣦ࠷খ ʜ͍࣋ͬͯΔσʔλͷ৚݅ͷൣғ ৚݅ ੾ยI S খଛࣦSେ ଛࣦ࠷খ͔ͭ30$ͱަ఺Λ࣋ͭ఺ (0.1,0.7) ͍͍ͩͨ ͘Β͍ʁ ਅཅੑ཰ͱِཅੑ཰ͷׂ߹͕ ఺ͷ஋ʹͳΔΑ͏ʹࣝผڥքΛఆΊΔͱ ࠷΋ޡΓΛখͨࣝ͘͞͠ผ͕ՄೳʹͳΔ !33
  22. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ 30$άϥϑ 30$͸Ϋϥεͷ෼෍͕Θ͔Βͳͯ͘΋ඳ͘͜ͱ͕Ͱ͖Δɽ ਅͷΫϥεͱσʔλͷείΞ      Q

    O  ᮢ஋ͷείΞ4Ҏ্ͷείΞΛ࣋ͭσʔλΛQ ͱࣝผ͢Δɽ ͜ΕΛɼᮢ஋ΛมԽͤͯ͞܁Γସ͑͢ɽ !34
  23. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ 30$άϥϑ    Q   O 

    30$͸Ϋϥεͷ෼෍͕Θ͔Βͳͯ͘΋ඳ͘͜ͱ͕Ͱ͖Δɽ ᮢ஋4 ਅཅੑ཰ ِཅੑ཰ 㱣                        —㱣   !35
  24. ड৴ऀಈ࡞ಛੑۂઢʢ30$ʣ 30$άϥϑ    Q   O 

    30$͸Ϋϥεͷ෼෍͕Θ͔Βͳͯ͘΋ඳ͘͜ͱ͕Ͱ͖Δɽ !36
  25. # " $ Cp* Cn* ِཅੑ཰ ਅཅੑ཰ ষ຤໰୊  30$ۂઢΛඳ͍ͨͱ͜ΖɼϥϯμϜࣝผΛද͢

    ౓ͷ௚ઢͷԼଆʹདྷͯ͠·ͬͨɽͲ͏͢Ε͹ྑ͍͔ɽ ্ਤͷਅཅੑ཰ͱِཅੑ཰ͷେ͖͕͞ٯస͍ͯ͠Δྫͱଊ͑ΒΕΔͷͰɼ ୯७ʹཅੑͱӄੑͷΫϥεΛٯస͢Ε͹͍͍ ͋Δ͍͸ɼ྆ํͷείΞʹϚΠφεΛ͔͚Δ͔ᮢ஋ͷεΩϟϯΛٯ͔Βߦ͏ͱ͔ !37
  26. ·ͱΊ ੾ยI S খଛࣦSେ ෼ྨͷධՁ͸ࠞಉߦྻ͔ΒಘΒΕΔ ͍͔ͭ͘ͷࢦඪͰߦ͑Δ ࠞಉߦྻΛ༩͑Δ֬཰෼෍ͷධՁ͸ 30$ͷԼ෦໘ੵ "6$ ʹΑͬͯධՁ͢Δ

    ֬཰෼෍ͷ࠷΋ྑ͍ࣝผڥք͸ 30$ͱϕΠζͷࣝผنଇͷ ଛࣦ͕࠷খʹͳΔ఺ΛબͿ͜ͱͰಘΒΕΔ 30$͸֬཰෼෍͕Θ͔Βͳͯ͘΋ ඳ͘͜ͱ͕Ͱ͖Δ !38
  27. ଛࣦߦྻ ଛࣦʹؔ͢Δࣜʹग़ͯ͘Δ-ʹ͍ͭͯ r(Ci |x) = ΣK k=1 Lik P(Ck |x)

    ,ͷ࣌ɼS͸࠷΋؆୯ͳ-Λ࢖ͬͯ࣍ͷΑ͏ʹॻ͖දΘͤΔɽ Lkj p(Ck |x) = (1 − Ikj )p(Ck |x) = {( 1 1 1 1) − ( 1 0 0 1)} ( p(C1 |x) p(C2 |x)) = ( 0 1 1 0) ( p(C1 |x) p(C2 |x)) = ( p(C2 |x) p(C1 |x)) ͜ͷதͰখ͍͞ํΛऔΔ࣌͸ҎԼͷΑ͏ʹॻ͚Δ min ( p(C2 |x) p(C1 |x)) !39