Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
対話システム
Search
shu_suzuki
February 21, 2019
Technology
0
76
対話システム
長岡技術科学大学
自然言語処理研究室
B3ゼミ
鈴木脩右
shu_suzuki
February 21, 2019
Tweet
Share
More Decks by shu_suzuki
See All by shu_suzuki
文献紹介:Investigating Evaluation of Open-Domain Dialogue Systems With Human Generated Multiple References
shu_suzuki
0
190
文献紹介:Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
shu_suzuki
0
82
文献紹介: How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models
shu_suzuki
0
320
文献紹介:Conversational Response Re-ranking Based on Event Causality and Role Factored Tensor Event Embedding
shu_suzuki
0
160
文献紹介:Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables
shu_suzuki
0
76
文献紹介:ReCoSa: Detecting the Relevant Contexts with Self-Attention for Multi-turn Dialogue Generation
shu_suzuki
0
210
文献紹介:Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
shu_suzuki
0
110
文献紹介:Why are Sequence-to-Sequence Models So Dull?
shu_suzuki
0
66
文献紹介:Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network
shu_suzuki
0
210
Other Decks in Technology
See All in Technology
20250910_障害注入から効率的復旧へ_カオスエンジニアリング_生成AIで考えるAWS障害対応.pdf
sh_fk2
3
280
新アイテムをどう使っていくか?みんなであーだこーだ言ってみよう / 20250911-rpi-jam-tokyo
akkiesoft
0
350
「どこから読む?」コードとカルチャーに最速で馴染むための実践ガイド
zozotech
PRO
0
570
OCI Oracle Database Services新機能アップデート(2025/06-2025/08)
oracle4engineer
PRO
0
180
AIがコード書きすぎ問題にはAIで立ち向かえ
jyoshise
1
290
フルカイテン株式会社 エンジニア向け採用資料
fullkaiten
0
8.8k
エンジニアリングマネージャーの成長の道筋とキャリア / Developers Summit 2025 KANSAI
daiksy
3
1.1k
現場で効くClaude Code ─ 最新動向と企業導入
takaakikakei
1
260
初めてAWSを使うときのセキュリティ覚書〜初心者支部編〜
cmusudakeisuke
1
280
AIエージェント開発用SDKとローカルLLMをLINE Botと組み合わせてみた / LINEを使ったLT大会 #14
you
PRO
0
130
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
500
RSCの時代にReactとフレームワークの境界を探る
uhyo
11
3.5k
Featured
See All Featured
Raft: Consensus for Rubyists
vanstee
140
7.1k
The Invisible Side of Design
smashingmag
301
51k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Building Applications with DynamoDB
mza
96
6.6k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Building a Modern Day E-commerce SEO Strategy
aleyda
43
7.6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Art of Programming - Codeland 2020
erikaheidi
56
13k
Transcript
対話システム 鈴木脩右 2019/2/21 長岡技術科学大学 自然言語処理研究室 1
目次 対話システムとは 対話システムのタイプ 基本構成 発話生成 研究の傾向 まとめ 2
対話システムとは
対話システムとは • 自然言語で,ユーザとコミュケーションを行うシステム • 自然言語処理分野が主だが,音声情報処理,画像認識等幅 広い分野を含む • 近年の例では,スマートスピーカーやスマートアシスタン ト,Microsoft のりんな等が挙げられる
3
対話システムのタイプ
対話システムのタイプ • 入出力のモダリティ • テキスト,音声,マルチモーダル (上記+画像やセンサ等) • タスクの有無,種類 • タスク指向型
(情報検索,インタビュー等),非タスク指向型 (雑談 等),混合型 • ドメイン • 単一ドメイン,マルチドメイン,オープンドメイン • 対話参加者数 • 1 対 1,マルチパーティ 4
基本構成
基本構成 • 入力理解 - 入力情報の意味を理解する • 対話管理 - DB を更新し,行動選択を行う
• 出力生成 - 行動選択に基づいて,発話生成 5
発話生成
発話生成 • ルールベースによる生成 • あらかじめ,A と言われたら B と返すといったルールを設定 • 構築のコストは高いが,(ルールをしっかり作れれば)
間違った応 答はしにくい • 用例ベースによる生成 • 用例に近しい発話を選択 • 構築コストは比較的低いが,応答が不自然になる可能性がある 6
研究の傾向
研究の傾向 1. 新規特長型 • 対話システムに新しい特長を持たせる 2. 開発・運用コスト軽減型 • 知識記述等のコストを減らす 3.
性能向上型 • モジュールの改良でシステムの性能を向上させる 4. 評価コスト削減型 • システムの評価をなるべく低コストで行う 7
まとめ
まとめ • 対話システムは,ユーザとコミュケーションを行うシステム • 入出力のモダリティやタスクの有無で様々なタイプに分け られる • 構成は大きく分けて,入力理解,対話管理,出力生成の 3 つ
• 発話の生成には,ルールベースの手法,用例ベースの手法 がある • 研究の傾向として,新規特長型,開発・運用コスト軽減型, 性能向上型,評価コスト削減型の 4 つがある 8
参考文献 [1] 中野幹生, 駒谷和範, 船越孝太郎, 中野有紀子. 自然言語処理シ リーズ 7 対話システム.
コロナ社.2015. [2] 中野幹生. 対話システム構築入門. 第 32 回人工知能学会全国大 会チュートリアル.2018. [3] 中野幹生. 対話システムの研究課題. 第 8 回対話システムシン ポジウムチュートリアル.2017. 9