Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介:Multi-Task Deep Neural Networks for Natura...
Search
shu_suzuki
February 14, 2019
Technology
0
230
文献紹介:Multi-Task Deep Neural Networks for Natural Language Understanding
長岡技術科学大学
自然言語処理研究室
鈴木脩右
第6回B3ゼミ発表資料
shu_suzuki
February 14, 2019
Tweet
Share
More Decks by shu_suzuki
See All by shu_suzuki
文献紹介:Investigating Evaluation of Open-Domain Dialogue Systems With Human Generated Multiple References
shu_suzuki
0
190
文献紹介:Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
shu_suzuki
0
82
文献紹介: How to Make Context More Useful? An Empirical Study on Context-Aware Neural Conversational Models
shu_suzuki
0
330
文献紹介:Conversational Response Re-ranking Based on Event Causality and Role Factored Tensor Event Embedding
shu_suzuki
0
160
文献紹介:Modeling Semantic Relationship in Multi-turn Conversations with Hierarchical Latent Variables
shu_suzuki
0
76
文献紹介:ReCoSa: Detecting the Relevant Contexts with Self-Attention for Multi-turn Dialogue Generation
shu_suzuki
0
210
文献紹介:Better Automatic Evaluation of Open-Domain Dialogue Systems with Contextualized Embeddings
shu_suzuki
0
110
文献紹介:Why are Sequence-to-Sequence Models So Dull?
shu_suzuki
0
69
文献紹介:Multi-Turn Response Selection for Chatbots with Deep Attention Matching Network
shu_suzuki
0
210
Other Decks in Technology
See All in Technology
[Journal club] Thinking in Space: How Multimodal Large Language Models See, Remember, and Recall Spaces
keio_smilab
PRO
0
100
オブザーバビリティと育てた ID管理・認証認可基盤の歩み / The Journey of an ID Management, Authentication, and Authorization Platform Nurtured with Observability
kaminashi
2
1.5k
AIがコードを書いてくれるなら、新米エンジニアは何をする? / komekaigi2025
nkzn
23
15k
DSPy入門
tomehirata
6
770
触れるけど壊れないWordPressの作り方
masakawai
0
510
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
910
ざっくり学ぶ 『エンジニアリングリーダー 技術組織を育てるリーダーシップと セルフマネジメント』 / 50 minute Engineering Leader
iwashi86
7
3.9k
OpenCensusと歩んだ7年間
bgpat
0
280
kotlin-lsp の開発開始に触発されて、Emacs で Kotlin 開発に挑戦した記録 / kotlin‑lsp as a Catalyst: My Journey to Kotlin Development in Emacs
nabeo
2
100
文字列操作の達人になる ~ Kotlinの文字列の便利な世界 ~ - Kotlin fest 2025
tomorrowkey
2
280
アノテーション作業書作成のGood Practice
cierpa0905
PRO
1
340
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
390
Featured
See All Featured
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
630
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
190
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
The Invisible Side of Design
smashingmag
302
51k
Writing Fast Ruby
sferik
630
62k
Designing for Performance
lara
610
69k
Being A Developer After 40
akosma
91
590k
Music & Morning Musume
bryan
46
6.9k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
What's in a price? How to price your products and services
michaelherold
246
12k
Transcript
Multi-Task Deep Neural Networks for Natural Language Understanding 鈴木脩右 2019/2/14
長岡技術科学大学 自然言語処理研究室 1
目次 概要 背景 MT-DNN モデル 実験タスク 実験結果 まとめ 2
概要
概要 • MT-DNN(Multi-Task Deep Neural Network) というモデルを 提案 • 複数の言語理解
(NLU) タスクにわたり,言語表現を学習 • 10 個の NLU タスクで SotA を達成 • 少ないトレーニングデータで高い精度を示した 3
背景
背景 • NLU タスクには 2 つのアプローチがある • Multi-Task Learning (MTL)
• Laguage Model Pre-traning • MT-DNN は両方の強みを併せることを目指した 4
Multi-Task Learning (MTL) • 別のタスクで得た知識を他のタスクにも利用 • 多くの関連タスクから教師データを効果的に活用できる • 学習した言語表現をタスク全体で普遍的に用いることがで きる
5
Laguage Model Pre-traning • 教師なしデータで言語表現を事前学習 • モデルの微調整をし,追加学習することで別タスクに適用 できる • 例として,BERT,ELMo
が挙げられる 6
MT-DNNモデル
MT-DNNモデル Figure 1: Architecture of the MT-DNN model for representation
learning.[1] 7
実験タスク
実験タスク i 1. Single-Sentence Classification 1 つの文で判定するタスク 2. Text Similarity
2 つの文が表す感情が類似しているか判定するタスク 3. Pairwise Text Classification 2 つの文の含意や,意味が一致するか判定するタスク 4. Relevance Ranking 質問応答タスク 8
実験タスク ii Table 1: Summary of the three benchmarks: GLUE,
SNLI and SciTail.[1] 9
実験結果
実験結果 i Table 2: GLUE test set results, which are
scored by the GLUE evaluation server.[1] 10
実験結果 ii Table 3: Results on the SNLI and SciTail
dataset.[1] 11
実験結果 iii Figure 2: Domain adaption results on SNLI and
Sci-Tail.[1] Table 4: Domain adaptation results on SNLI and Scitail.[1] 12
まとめ
まとめ • Multi-Task Learning (MTL) と Laguage Model Pre-traning を
組み合わせ,MT-DNN の言語表現を学習した • 幅広いタスクで高い成果を出した • MTL のモデル構造の理解を深めることで,MT-DNN を改善で きると考えられる 13
参考文献 [1] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng
Gao. Multi-Task Deep Neural Networks for Natural Language Understanding. arXiv:1901.11504 [cs], January 2019. 14