What if 勉強会 本日のコンテンツ ü Chapter 19 の復習 ü 20.1 The elements of treatment-confounder feedback ü 20.2 The bias of traditional methods ü 20.3 Why traditional methods fail ü 20.4 Why traditional methods cannot be fixed ü 20.5 Adjusting for past treatment 2
What if 勉強会 Fine point 20.1 Representing feedback cycles with acyclic graphs 6 ü Fig 20.1はacyclic graphだが、treatment-confounder feedback loop or cycleを表す → これを表現するためには各nodeが離散的な概念である必要がある → ただ各人においてnode間隔は厳密には異なるため定義上問題にならないの? ü 時間感覚は対象データの内、最小の粒度のものを採用すれば問題にはならない (Chapter 17でも同様の議論あり)
What if 勉強会 20.1 The elements of treatment-confounder feedback Fig 20.1を簡略化したFig 20.3を準備 ü L1 の効果を見たいのでL0 削除 A0 はランダムに決定, A1 はL1 のみに依存 ü U0 はとりあえず削除 ü A0 → A1 は削除 ü YはU1 のみで決定されるとする U1 は“測定されない免疫状態” ü Chapter 20の議論での多くが便宜上 A0 や A1 はYへ因果効果(sharp null hypothesis) を持たないことが仮定されているので注意 ü Lk は古典的なconfounderの概念とは異なり、Backdoor criteriaを満たす 共変量(cf. Chapter 6)と捉えた方が分かりやすいかもしれない (大沢の私見) 7
What if 勉強会 20.2 The bias of traditional methods 9 実際に計算してみよう!① ü 32,000人のHIV患者について前述の研究を行う ü A0 =1のランダム割付は0.5の確率に設定、 ü A1 =1はL1 =1 (Low CD4) の時、0.8の確率に、 L1 =0 (high CD4) の時、0.4の確率に設定することにする ü Identifiability(sequential exchangeability, positivity, and consistency)を前提 i.e. L1 で調整すればsequential conditional exchangeabilityが保たれると仮定 Fig 20.3はsharp null hypothesisの元での sequentially randomized experimentを示す
What if 勉強会 20.3 Why traditional method fail 16 ü Confoundersが過去の治療のみに影響される時(e.g., Fig 20.3)は、 randomized /observational studiesどちらでも、今までの議論の方向性で問題ない ü Fig 20.6のようにW0 (“定期受診に来たかどうか”でデータベースには残っていない情報) が残るobservational studiesでは、biasの原因となる上、W0 の有無は判別不可 ü 他にもFig 20.7のような場合でも、 因果効果に該当しないA0 とYの関連を生む → Fine Point 20.2 ü 時刻ポイントが増え、多次元データであればあるほどこれらのbiasは増幅する G-methodsしか調整できない状況なので、問題ありありなのだが、以下の場合だと今まで考えていた以上の 問題が発生するので、そもそもどうやってconditioningする?という議論以前の問題が生じる(大沢の感想) これはmisclassificationの話にも繋がるので、treatment-confounder feedbackに特異的な話ではない(大沢の感想)
What if 勉強会 20.5 Adjusting for past treatment 19 ü Fig 20.3や20.4では簡単のため、A0 からA1 への矢印を消していたが、 A0 →A1 の直接矢印が出ている場合を考える Fig 20.8はFig 20.3に対応、Fig20.9はFig 20.4に対応している
What if 勉強会 20.5 Adjusting for past treatment 20 ü Fig 20.8やFig 20.9において、L1 でconditioningするだけではA1 とYがpathで繋がる ü 加えてFig20.10のようにA0 がYへ効果をもたらす場合は、 A0 でのconditioningも必要 → A0 がA1 とYのconfounderになっているため ü (そういえば)時点Kでの Sequential exchangeabilityを考慮する上では、 それより前の治療歴とconfounders全て がYに対して独立でなければならないということをChapter 19で学んだ 19章 @tamagoさんのスライド
What if 勉強会 20.5 Adjusting for past treatment 21 ü ̅ "を考慮するのは難しいからと、 A1 単独の治療効果を見ることに妥協しようとしても、A0 →A1 があれば、 L1 のconditioningだけでは不十分となってしまう ü そのため臨床試験は”new-user designs” のもとでtime-fixed treatmentの効果を推定 → いわゆる薬の持ち越し効果のようなものは排除したい ü Observational studiesではA0 を測定すべく、カルテレビューや患者への聞き取りが必要 → 測定結果自体はA0 *となり(cf. Chapter 9)、 A0 *自体はL1, A1 とは独立 measurement errorがindependence-nondifferentialでもbias under the nullの原因に under the alternativeであっても、効果推定におけるbiasの原因となりうる
What if 勉強会 Technical point 20.1 G-null test ü (背理法的に)Sharp null hypothesisの成立を仮定 (then Yg = Y) (大沢注: consistencyは担保されるので、反実仮想値=観測値) Ygに対してSequential exchangeabilityが成立する場合(cf. Chapter 19) 2つの時刻(t=0,1)に限ると、以下のように表せる Y ∥ A0|L0 ・・・ ① and Y ∥ A1|A0 = g(L0), L0,L1 ・・・ ② (A0 がランダムに決定される場合, Y ∥ A0 and Y ∥ A1 |A0 = a0 , L1 ) ü ①はL0 で層別化した際のA0 の Yへの因果効果がないことを示している ü ②はA0, L0 で層別化した際のA1 の Yへの因果効果がないことを示している ü Sequential exchangeabilityが成立する場合に、 Conditional independenceが示されたnode間ではsharp null hypothesisが棄却されない (L層内でVの分布が異なり、Cancel-outによる偶然のsharp nullの可能性が考慮されておらず、上記成立は完全に示されない) 逆にconditional independenceでなければsharp null hypothesisは棄却される 23