Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
모빌리티데이터팀 신입 데이터 분석가의 1년 회고
Search
SOCAR
October 19, 2019
Programming
0
890
모빌리티데이터팀 신입 데이터 분석가의 1년 회고
데이터야놀자 2019에서 발표한 자료입니다
SOCAR
October 19, 2019
Tweet
Share
More Decks by SOCAR
See All by SOCAR
코드 리뷰 적응기
socar
0
920
O'reilly Strata Data Conference New York 2019 후기
socar
2
1.5k
TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정
socar
0
290
쏘카, 개발 - 쏘카 R&D 이야기
socar
0
450
MOBILITY x DATA : 모빌리티 산업의 도전 과제
socar
0
600
Other Decks in Programming
See All in Programming
PromptyによるAI開発入門
ymd65536
1
320
Duke on CRaC with Jakarta EE
ivargrimstad
0
950
AIレビュー導入によるCIツールとの共存と最適化
kamo26sima
1
1.4k
もう一人で悩まない! 個の知見をチームの知見にする3つの習慣と工夫 / Into team knowledge.
honyanya
3
480
体得しよう!RSA暗号の原理と解読
laysakura
2
190
「その気にさせる」エンジニアが 最強のリーダーになる理由
gimupop
3
400
Devin , 正しい付き合い方と使い方 / Living and Working with Devin
yukinagae
1
420
CSC486 Lecture 14
javiergs
PRO
0
140
CQRS+ES勉強会#1
rechellatek
0
210
OUPC2024 Day 1 解説
kowerkoint
0
360
研究開発と実装OSSと プロダクトの好循環 / A virtuous cycle of research and development implementation OSS and products
linyows
1
160
SLI/SLOの設定を進めるその前に アラート品質の改善に取り組んだ話
tanden
2
220
Featured
See All Featured
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
101
18k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
11
580
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
Optimising Largest Contentful Paint
csswizardry
34
3.1k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
227
22k
The Language of Interfaces
destraynor
156
24k
Building an army of robots
kneath
303
45k
Docker and Python
trallard
44
3.3k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
4
470
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Transcript
ݽ࠽ܻ౭ ؘఠ नੑ ࠙ࢳо 1֙ ഥҊ
ࣗѐ ӂਮജ • ҃ + ஹೊఠҕ ҕ ݏ ঋই ز
• झఋসҗ ؘఠী ҙब ݆ • 2019.01 ॑ ؘఠ ࠙ࢳо ੑࢎ, ఋ ؘఠ ѐੋੋ ҙब • بद ࢤ, بद ӝמ ١ بदী ҙब ݆ • নೠ بदܳ ҃ೞח Ѫਸ જইೣ • ࢲ݅ఀ Ѣೠ بदח ইࠁӝ ൨ٜ ఋؘఠ • ର ബਯച • ࣻਃ ஏ, ର ߓ ঌҊ્ܻ • ࢲ زച
ز җѢ৬ അ
ܻо زೞח ߑध ӝࣿ ߊҗ ೣԋ ߸ച
ؘఠ۽ ࠁח ࢲ ز ؘఠ۽ ಹח ݽ࠽ܻ౭ ޙઁ
ഥҊ ETA ର ബਯച
1. ؘఠ۽ ࠁח ࢲ ز
ৈ۞ٜ࠙য٣ࢲয়࣑աਃ
ࢲزীҙೠݻоࢎपٜ
1 ъթҳ 2 ҳ 3 ࢲୡҳ 4 ١ನҳ 5 ઙ۽ҳ
6 ਊҳ 7 ݃ನҳ 8 ࣠ҳ 9 ࢿزҳ 10 ࢲޙҳ 11 ҙঈҳ 12 ъࢲҳ 0.0147 13 زҳ 0.0135 14 ࢿ࠘ҳ 0.0123 15 ҳ۽ҳ 0.0106 ইஜ 8:00 ب ࣽਤ (%) ইஜীࢎۈٜೱೞחҔ
ইஜ 8:00 ب ࣽਤ (%) ইஜীࢎۈٜೱೞחҔ ب ࢚ਤ 5ѐ ҳח
ز ݻ %ܳ ରೡөਃ? ࢲ ҳח ୨ 25ѐ ੑפ. 1 ъթҳ 2 ҳ 3 ࢲୡҳ 4 ١ನҳ 5 ઙ۽ҳ 6 ਊҳ 7 ݃ನҳ 8 ࣠ҳ 9 ࢿزҳ 10 ࢲޙҳ 11 ҙঈҳ 12 ъࢲҳ 0.0147 13 زҳ 0.0135 14 ࢿ࠘ҳ 0.0123 15 ҳ۽ҳ 0.0106
ইஜ 8:00 ب ࣽਤ (%) 24% 76% ইஜীࢎۈٜೱೞחҔ 1 ъթҳ
0.3041 2 ҳ 0.1353 3 ࢲୡҳ 0.1324 4 ١ನҳ 0.0874 5 ઙ۽ҳ 0.0784 6 ਊҳ 0.0657 7 ݃ನҳ 0.0369 8 ࣠ҳ 0.0318 9 ࢿزҳ 0.0282 10 ࢲޙҳ 0.0275 11 ҙঈҳ 0.0213 12 ъࢲҳ 0.0147 13 زҳ 0.0135 14 ࢿ࠘ҳ 0.0123 15 ҳ۽ҳ 0.0106
ࢲबসޖҳ $#%$FOUSBM#VTJOFTT%JTUSJDU ١ನ ҳ ઙ۽ ъթ
↟بद࢚সӝמػٜ ↟݆زबসޖҳܳबਵ۽ੌযդ ١ನ ъթ ҳ ઙ۽ ࢲबসޖҳ $#%$FOUSBM#VTJOFTT%JTUSJDU
١ನҳ Ӕ ࢲ թࢲଃী ݽৈ
ҳ,ઙ۽ҳ Ӕ ੌఠܳ ل۞ऱҊ ࢎۈٜ Ҋ
ъթҳ Ӕ ъթ সޖҳ৬ Ѣо ࢴৈח ݽण
बঠ ۽оࠇद
ࢎۈٜয٣ࢲೞܖܳ݃ޖܻೡө ঠр 23:00 ഐ ࣽਤ (%) 1 ъթҳ 2 ҳ
3 ࢲୡҳ 4 ઙ۽ҳ 5 ਊҳ 6 ݃ನҳ 7 ١ನҳ 8 ࢿزҳ 9 ࣠ҳ 10 ࢲޙҳ 11 ҙঈҳ 0.0109 12 زҳ 0.0101 13 ҟҳ 0.0079 14 ҳ۽ҳ 0.0065 15 ъࢲҳ 0.0064 ഐ ࢚ਤ 5ѐ ҳח ز ݻ %ܳ ରೡөਃ?
ࢎۈٜয٣ࢲೞܖܳ݃ޖܻೡө ঠр 23:00 ഐ ࣽਤ (%) 1 ъթҳ 0.4241 2
ҳ 0.1248 3 ࢲୡҳ 0.0982 4 ઙ۽ҳ 0.0791 5 ਊҳ 0.0783 6 ݃ನҳ 0.052 7 ١ನҳ 0.0435 8 ࢿزҳ 0.0216 9 ࣠ҳ 0.0159 10 ࢲޙҳ 0.0146 11 ҙঈҳ 0.0109 12 زҳ 0.0101 13 ҟҳ 0.0079 14 ҳ۽ҳ 0.0065 15 ъࢲҳ 0.0064 20% 80%
None
ࢎۈٜয٣ࢲೞܖܳ݃ޖܻೡө ঠр 23:00 ഐ ࣽਤ (%) 1 ъթҳ 0.1897 2
ࢲୡҳ 0.1086 3 ਊҳ 0.0817 4 ҙঈҳ 0.0741 5 ࣠ҳ 0.0694 6 ࢿزҳ 0.0694 7 ݃ನҳ 0.0667 8 زҳ 0.0607 9 ١ನҳ 0.0531 10 ҟҳ 0.0431 11 ҳ 0.0406 12 ࢿ࠘ҳ 0.0398 13 ࢲޙҳ 0.0379 14 ಣҳ 0.0339 15 ઙ۽ҳ 0.0312 ঠр 23:00 ب ࣽਤ (%) 1 ъթҳ 0.4241 2 ҳ 0.1248 3 ࢲୡҳ 0.0982 4 ઙ۽ҳ 0.0791 5 ਊҳ 0.0783 6 ݃ನҳ 0.052 7 ١ನҳ 0.0435 8 ࢿزҳ 0.0216 9 ࣠ҳ 0.0159 10 ࢲޙҳ 0.0146 11 ҙঈҳ 0.0109 12 زҳ 0.0101 13 ҟҳ 0.0079 14 ҳ۽ҳ 0.0065 15 ъࢲҳ 0.0064
बঠदр1. ߊ ب
ইஜदр". ߊ ب
ݽ࠽ܻ౭ؘఠ࠙ࢳоח۽যڃؘఠܳࠁաਃ Origin - Destination data • ౠ दр زউ যו
ࢎۈٜ য٣۽ زೞӡ ਗೞחо? • ࠂೠ بद ࣘ ز ಁఢী ೠ Ѫ
ݽ࠽ܻ౭ؘఠ࠙ࢳоח۽যڃؘఠܳࠁաਃ Origin - Destination data • ؘఠࣁ द id created_at_kr
status origin_lng origin_lat origin_gu destination_lng destination_lat dest_si dest_gu 1 2019-01-30T00:25:20 CANCELED 127.0414496 37.51002284 ъթҳ 127.1909267 37.56209539 ҃ӝ ೞթद 2 2019-011-27T15:37:40 ACCEPTED 127.0563954 37.54280202 ࢿزҳ 126.8721171 37.45949251 ҃ӝ ҟݺद 3 2019-09-16T17:52:19 ARRIVED_AT 127.0613762 37.51048997 ъթҳ 127.1375613 37.59445381 ҃ӝ ҳܻद 4 2019-04-22T19:43:07 PICKED_UP 127.1105661 37.51265727 ࣠ҳ 126.9714429 37.40572274 ҃ӝ উনद 5 2019-07-07T21:33:56 RIDING 127.0127873 37.49320677 ࢲୡҳ 127.0709374 37.27701722 ҃ӝ ਊੋद 6 2019-10-30T21:35:33 DROPPED_OFF 127.0018494 37.58132881 ࢿزҳ 127.1243009 37.32402575 ҃ӝ द 7 2019-09-27T21:41:36 DISPATCHING 127.0730746 37.5113235 ࣠ҳ 126.983202 37.39739958 ҃ӝ ৴द 8 2019-12-24T22:53:23 CANCELED 126.9696439 37.5635487 ҳ 126.9936623 37.43394209 ҃ӝ җୌद ഐ / ਤ҃ب ب / ਤ҃ب दр
ݽ࠽ܻ౭ؘఠ࠙ࢳоח۽যڃؘఠܳࠁաਃ Origin - Destination data • ؘఠࣁ द id created_at_kr
status origin_lng origin_lat origin_gu destination_lng destination_lat dest_si dest_gu 1 2019-01-30T00:25:20 CANCELED 127.0414496 37.51002284 ъթҳ 127.1909267 37.56209539 ҃ӝ ೞթद 2 2019-011-27T15:37:40 ACCEPTED 127.0563954 37.54280202 ࢿزҳ 126.8721171 37.45949251 ҃ӝ ҟݺद 3 2019-09-16T17:52:19 ARRIVED_AT 127.0613762 37.51048997 ъթҳ 127.1375613 37.59445381 ҃ӝ ҳܻद 4 2019-04-22T19:43:07 PICKED_UP 127.1105661 37.51265727 ࣠ҳ 126.9714429 37.40572274 ҃ӝ উনद 5 2019-07-07T21:33:56 RIDING 127.0127873 37.49320677 ࢲୡҳ 127.0709374 37.27701722 ҃ӝ ਊੋद 6 2019-10-30T21:35:33 DROPPED_OFF 127.0018494 37.58132881 ࢿزҳ 127.1243009 37.32402575 ҃ӝ द 7 2019-09-27T21:41:36 DISPATCHING 127.0730746 37.5113235 ࣠ҳ 126.983202 37.39739958 ҃ӝ ৴द 8 2019-12-24T22:53:23 CANCELED 126.9696439 37.5635487 ҳ 126.9936623 37.43394209 ҃ӝ җୌद ഐ ஂࣗ ٘ۄߡ ഐ ࣻۅ ٘ۄߡ ب थё थ ೯ थё ೞର ӝ ࢚క 다양한 상태 값을 가짐
2. ؘఠ۽ ಹח ݽ࠽ܻ౭ ޙઁ
https://dribbble.com/shots/4153309-The-Wait ޖоӝܻחܻݽण jj
ରഐ ରب ݾߊ ݾب Icons made by Freepik from www.flaticon.com
is licensed by CC 3.0 BY ఋ҃ৈ
ରഐ ରب ݾߊ ݾب Icons made by Freepik from www.flaticon.com
is licensed by CC 3.0 BY ఋ҃ৈ 데이터로 사용자 경험을 개선한 이야기
ETA ۆ? • Estimated time of arrival ( ࢚ ب
दр ) • ରਸ ഐೞҊ Ҋёীѱ بೞӝө ݽ࠽ܻ౭ী.-ਊೞӝ
ݽ࠽ܻ౭ী.-ਊೞӝ 주요 호출 취소 사유
&5"ޙઁܳ೧Ѿೞחߑߨٜ ରਸט۰ࢲ Әߑبೞѱ݅ٚ
ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ &5"ޙઁܳ೧Ѿೞחߑߨٜ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ࠙ੋؘ࠙ਵ۽ ցޖࠗഛೞ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ࠙ੋؘ࠙ਵ۽ ցޖࠗഛೞ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ ؊ഛೠчਸઁҕ೧ঠೠ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ݠन۞ ݽ؛ਸ ਊ೧ࠁ ࠙ੋؘ࠙ਵ۽ ցޖࠗഛೞ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ
تҗदрٚ അपੋޙઁ ؊ഛೠчਸઁҕ೧ঠೠ
۽ંݾ ↟Ҋёীѱࠁഛೠ࢚بदрਸࠁৈ ↟ఎਸ݄Ҋ ࢲ࠺झਸ֫חੌ ӝઓ&5" ֎ߡ"1* ࠁ&5" .-ݽ؛ ↟ ٘ۄߡҗѢ೯ಁఢ
&5"ҙ۲ؘఠఐ࢝ दрীٮܲ&5"۪٘ ਘ߹ दр߹ 6ਘ ର ૐର റ хࣗ ୶ࣁ
Ӕ दр ృӔ दр
&5"ҙ۲ؘఠఐ࢝ ীٮܲಣӐ&5" Aҳ Bҳ
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝ ࢚ ب दрࠁ ןח ҃ೱࢿ
= SUM( ۄ٘ Ѥٜ पઁ ࣗਃ दр) / SUM( ۄ٘ Ѥٜ ࢚ ࣗਃ दр)
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝ ডр ןח ࢿೱ 1.0 ~
1.5
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝ ן ঋח ࢿೱ
ࢎਊೠೖٜ ٘ۄߡןח҃ೱࢿ Ҋёডஂࣗా҅ ӝઓ&5" दр ਃੌ ର_ഐࢎѢܻ ਤب ҃ب ߸ࣻ
ਃب
ࢎਊೠೖٜ ٘ۄߡןח҃ೱࢿ Ҋёۄ٘ஂࣗా҅ ޖоࡐݡѪэו՝
ࢎਊೠೖٜ ٘ۄߡןח҃ೱࢿ Ҋёۄ٘ஂࣗా҅ ղо݅ٚݽ؛࠙ੌନয়חѪҗ࠙ੌନןѱѪਸҳ࠙ೞޅೣ അपੌନয়חѪҗןѱয়חѪೱܰ
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо • ੌ߈ਵ۽ ॳח MSE ࣚप ೣࣻ۽
णೠݶ • Ҋёীѱ ןח Ѫҗ ࡈܻ য়ח Ѫਸ ڙэ ੋध
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо • Ҋё ҃ী ؊ աࢂ ೱਸ
ח Ѫ ןѱ য়ח Ѫ • ٮۄࢲ ןѱ য়ח Ѫী ಕօ౭ܳ ؊ ب۾ • ࣚप ೣࣻܳ • ࠺ட ਤ (Asymmetrical risk) • ੌ߈ਵ۽ ॳח MSE ࣚप ೣࣻ۽ णೠݶ • Ҋёীѱ ןח Ѫҗ ࡈܻ য়ח Ѫਸ ڙэ ੋध
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо weight = 0.4 residual = y_true
- y_predict grad = np.where(residual<0, -2.0*residual, -2.0*weight*residual) য়ରо 0ࠁ ҃৬ ҃ী ಁօ౭ܳ ܰѱ ח ೣࣻܳ Params = { ‘objective’ : custom_asymmetric_objective } ݾೣࣻܳ ೠ ೣࣻ۽
ݽ࠽ܻ౭ী.-ਊೞӝ Ѿҗ
ݽ࠽ܻ౭ী.-ਊೞӝ Ѿҗ
ݽ࠽ܻ౭ী.-ਊೞӝ Ѿҗ
ݽ؛݂ ױ҅ীࢲ ו՛ Ѫ • അपী ਊೡ ٸח নೠ ٜਸ
ೣԋ Ҋ೧ঠೠ • ఋ ࢎ۹ • ഛب : MAE • ࠺פझ : п ࠺ਯਸ ծ୶ח Ѫ / Ҋё ҃ ೱ࢚ ഛب ࠺פझ ҙ ݽ࠽ܻ౭ী.-ਊೞӝ
ߓನ ળ࠺ ױ҅ ݽ࠽ܻ౭ী.-ਊೞӝ
ߓನ ળ࠺ ױ҅ • ݽ؛݂ ৮߷ೞѱ լ • ઁ ࣁ࢚ਵ۽
ղࠁղ ݽ࠽ܻ౭ী.-ਊೞӝ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA
ߓನ റ ݽ࠽ܻ౭ী.-ਊೞӝ
ঌ ࣻ হח ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • যڃ ࠙ನ ೖٜ ٜয৳חী
ೠ ۽Ӧਸ ೞ ঋও ࠁ ݽ؛ ӝઓ ETA ࠁ ETA
ঌ ࣻ হח ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ ࠗपೠ ۽Ӧ • पઁ ч
• ஏ ч • যڃ ࠙ನ ೖٜ ٜয৳חী ೠ ۽Ӧਸ ೞ ঋও • ٮۄࢲ ݽ؛ ৵ Ӓۧѱ ஏ೮ח ঌ ࣻо হ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA
ੌױ ܀ߔ ݽ࠽ܻ౭ী.-ਊೞӝ • ٘ۄ۠ - ࢲ࠺झীח ਊೞ ঋҊ पઁ
ജ҃ীࢲ పझ݅ ೯ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA ӝઓ ETA
ੌױ ܀ߔ ݽ࠽ܻ౭ী.-ਊೞӝ • ٘ۄ۠ - ࢲ࠺झীח ਊೞ ঋҊ पઁ
ജ҃ীࢲ పझ݅ ೯ • ࠻௪ܻ৬ క࠶۽۽ ݽפఠ݂ بҳܳ ݃۲ೞҊ ۽Ӓܳ ऺইࠆ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA ӝઓ ETA
য়ܨо լ؍ ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • ਃೠ ೖ ೞաо ࢲ۽
ܲ ࠙ನܳ оҊ (ࢲ۽ ܲ ױਤ ޙઁ) Train ױ҅
য়ܨо լ؍ ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • ਃೠ ೖ ೞաо ࢲ۽
ܲ ࠙ನܳ оҊ (ࢲ۽ ܲ ױਤ ޙઁ) Train ױ҅ Test ױ҅
য়ܨо լ؍ ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • ਃೠ ೖ ೞաо ࢲ۽
ܲ ࠙ನܳ о • ߓನ ী ݽפఠ݂ਸ ࠺೮ݶ Әߑ ೧Ѿ೮ਸ ޙઁ • ѐߊ৬ ഈস җীࢲ ࢎ ࣗా ޙઁ Train ױ҅ Test ױ҅
ݽ࠽ܻ౭ী.-ਊೞӝ য ؘఠࣇ ࠙ࢳ ߂ ݽ؛݂ য ಣо
(MAE,RMSE) ঌ؍ Ѫ
য ؘఠࣇ ࠙ࢳ ߂ ݽ؛݂ য ಣо (MAE,RMSE)
࠙ࢳ ߂ ݽ؛݂ ࢜۽ ೞח ಣо ࢜۽ ݅٘ח ؘఠࣇ ߓನ ߂ ݽפఠ݂ ঌ؍ Ѫ ೧ঠ೮؍ Ѫ ݽ࠽ܻ౭ী.-ਊೞӝ
2. ؘఠ۽ ಹח فߣ૩ ݽ࠽ܻ౭ ޙઁ
٘ۄߡоغযࠇद ࢚ടীࢲ ѐੋ ղܾ ࣻ ח ୭ ࢶఖ? ࢚
ࣻਃ
٘ۄߡоغযࠇद ѐੋ ౸ױೡ ࣻ ח ୭ ࢶఖ ࢚ ࣻਃ
Ӓۢ٘ۄߡоৈ۞ݺۄݶ ࢚ ࣻਃ
࢚ ࣻਃ بद ҙীࢲח ୭ ইצ Ѿҗ Ӓۢ٘ۄߡоৈ۞ݺۄݶ
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ ରബਯച
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ ରബਯച ݠन۞दр߹߹ࣻਃPSҕәਸஏ ୭ചݽ؛ஏೠчܳ߄ఔਵ۽୭ച +
• Linear Programming • Integer Programming • Routing • Packing
• Network Flows • Assignment • Scheduling Operation research
• Linear Programming • Integer Programming • Routing • Packing
• Network Flows • Assignment • Scheduling Operation research
ݽ࠽ܻ౭৬୭ച
֎ਕ • ֢٘৬ ݂۽ ܖয ֎ਕ
֢٘ /PEF ೞӝ -20 -20 -20 -10 -50 -40 90
30 • ֢٘ח ౠೠ ۄҊ ೡ ࣻ • ҕә ֢٘ : թח ର ߊࢤೞח • ࣻਃ ֢٘ : ࣻਃо ߊࢤೞח
݂ -JOL ೞӝ • ݂ח ֢٘৬ ֢٘ܳ োѾೠ • ݂ܳ
ా೧ زਸ ೡ ҃ীח ࠺ਊ ߊࢤ • അपীࢲח Ѣܻ ࣗਃ दр 30 5 10 12 12 20 5 10
-20 -20 -20 -10 -50 -40 90 30 • ܻо
ೠ ֎ਕ 30 5 10 12 12 20 5 10 ֎ਕ
ݽ࠽ܻ౭৬୭ച ݂ ࠺ਊਸ п ֢٘ ҕәҗ ࣻਃܳ ࣛߡܳ
ࢶೞҊ, ֎ਕܳ ҳࢿ https://developers.google.com/optimization/flow/mincostflow
-20 -10 -50 -40 90 30 ݽ࠽ܻ౭৬୭ച • ࠺ਊਸ ୭ࣗചೞݶࢲ
ҕә ֢٘ীࢲ ࣻਃ ֢٘۽ زदఃח ߑध • Min cost flow problem
ݽ࠽ܻ౭৬୭ച 0 4 5 3 1 2 20 10 50
40 50 • ࣛߡ(Solver)о ળ
ݽ࠽ܻ౭৬୭ച 0 4 5 3 1 2 20 10 50
40 50 • ࣛߡ(Solver)о ળ • അपীࢲ Ҋ۰೧ঠೡ ࢎ೦ٜ • ز ী ൧ ࣻب • ҕә োࣘਵ۽ ߊࢤೠ
3. ഥҊ
.-ݽ؛ਸ݅٘חѪҗपઁജ҃ীࢲ࠺झೞחѪ ݽ؛݂ Ӓ റܳ ࢤпೞӝ • ߓನ റীب উਵ۽ ҙܻೡ
ࣻ ח ജ҃ਸ ݃۲೧فח Ѫ ਃ (ݽפఠ݂) ࢚ടী ݏח ݾೣࣻ ӝ • ਃೞݶ ࣚप ೣࣻܳ ೧ঠೡ ࣻب • Objective is subjective !
بݫੋীҙೠঠӝ ־ҳաীѱ ਸ п بݫੋ • ೧ بݫੋীࢲח ݠन۞, ٩۞
ࠗо ইק ࣻ Ҋ • ܲ ӝߨٜҗ ೣԋ ॳৈঠ ࡄਸ ߊೡ ٸо ח Ѫ э
ۨਃࢿ ഒࢲ ݽٚ Ѫਸ ೡ ࣻח হӝী • ؘఠূפয +
ؘఠ࠙ࢳо + ѐߊ + • নೠ ҵ ࢎۈٜҗ ഈসਵ۽ ޙઁܳ ೧Ѿ೧աоҊ ߸ਵ۽ࠗఠ ݆ ߓӝ • જ ࢎࣻ, ܲ ҵ زܐ
ߊܳب৬दҊ ೦࢚хਸחLZMF https://zzsza.github.io/
ਊ ؘఠӒܛ • ఋؘఠ • ؘఠࢎझ • оѺۚ • ؘఠূפয݂
• URL : bit.ly/ؘఠঠ֥॑ਊ ؘఠ • ؘఠূפয • ؘఠࢎ౭झ • URL : https://tadacareer.vcnc.co.kr/
хࢎפ