Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
모빌리티데이터팀 신입 데이터 분석가의 1년 회고
Search
SOCAR
October 19, 2019
Programming
0
900
모빌리티데이터팀 신입 데이터 분석가의 1년 회고
데이터야놀자 2019에서 발표한 자료입니다
SOCAR
October 19, 2019
Tweet
Share
More Decks by SOCAR
See All by SOCAR
코드 리뷰 적응기
socar
0
990
O'reilly Strata Data Conference New York 2019 후기
socar
2
1.5k
TF에서 팀 빌딩까지 9개월의 기록 : 성장하는 조직을 만드는 여정
socar
0
310
쏘카, 개발 - 쏘카 R&D 이야기
socar
0
520
MOBILITY x DATA : 모빌리티 산업의 도전 과제
socar
0
620
Other Decks in Programming
See All in Programming
Java 25, Nuevas características
czelabueno
0
110
re:Invent 2025 のイケてるサービスを紹介する
maroon1st
0
150
gunshi
kazupon
1
120
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
4
1.2k
Jetpack XR SDKから紐解くAndroid XR開発と技術選定のヒント / about-androidxr-and-jetpack-xr-sdk
drumath2237
1
190
Pythonではじめるオープンデータ分析〜書籍の紹介と書籍で紹介しきれなかった事例の紹介〜
welliving
3
580
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
Flutter On-device AI로 완성하는 오프라인 앱, 박제창 @DevFest INCHEON 2025
itsmedreamwalker
1
150
Cell-Based Architecture
larchanjo
0
140
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
440
AtCoder Conference 2025
shindannin
0
170
実はマルチモーダルだった。ブラウザの組み込みAI🧠でWebの未来を感じてみよう #jsfes #gemini
n0bisuke2
3
1.3k
Featured
See All Featured
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
65
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
120
Paper Plane
katiecoart
PRO
0
44k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
My Coaching Mixtape
mlcsv
0
13
Everyday Curiosity
cassininazir
0
110
HDC tutorial
michielstock
0
270
AI: The stuff that nobody shows you
jnunemaker
PRO
1
19
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
330
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
190
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Transcript
ݽ࠽ܻ౭ ؘఠ नੑ ࠙ࢳо 1֙ ഥҊ
ࣗѐ ӂਮജ • ҃ + ஹೊఠҕ ҕ ݏ ঋই ز
• झఋসҗ ؘఠী ҙब ݆ • 2019.01 ॑ ؘఠ ࠙ࢳо ੑࢎ, ఋ ؘఠ ѐੋੋ ҙब • بद ࢤ, بद ӝמ ١ بदী ҙब ݆ • নೠ بदܳ ҃ೞח Ѫਸ જইೣ • ࢲ݅ఀ Ѣೠ بदח ইࠁӝ ൨ٜ ఋؘఠ • ର ബਯച • ࣻਃ ஏ, ର ߓ ঌҊ્ܻ • ࢲ زച
ز җѢ৬ അ
ܻо زೞח ߑध ӝࣿ ߊҗ ೣԋ ߸ച
ؘఠ۽ ࠁח ࢲ ز ؘఠ۽ ಹח ݽ࠽ܻ౭ ޙઁ
ഥҊ ETA ର ബਯച
1. ؘఠ۽ ࠁח ࢲ ز
ৈ۞ٜ࠙য٣ࢲয়࣑աਃ
ࢲزীҙೠݻоࢎपٜ
1 ъթҳ 2 ҳ 3 ࢲୡҳ 4 ١ನҳ 5 ઙ۽ҳ
6 ਊҳ 7 ݃ನҳ 8 ࣠ҳ 9 ࢿزҳ 10 ࢲޙҳ 11 ҙঈҳ 12 ъࢲҳ 0.0147 13 زҳ 0.0135 14 ࢿ࠘ҳ 0.0123 15 ҳ۽ҳ 0.0106 ইஜ 8:00 ب ࣽਤ (%) ইஜীࢎۈٜೱೞחҔ
ইஜ 8:00 ب ࣽਤ (%) ইஜীࢎۈٜೱೞחҔ ب ࢚ਤ 5ѐ ҳח
ز ݻ %ܳ ରೡөਃ? ࢲ ҳח ୨ 25ѐ ੑפ. 1 ъթҳ 2 ҳ 3 ࢲୡҳ 4 ١ನҳ 5 ઙ۽ҳ 6 ਊҳ 7 ݃ನҳ 8 ࣠ҳ 9 ࢿزҳ 10 ࢲޙҳ 11 ҙঈҳ 12 ъࢲҳ 0.0147 13 زҳ 0.0135 14 ࢿ࠘ҳ 0.0123 15 ҳ۽ҳ 0.0106
ইஜ 8:00 ب ࣽਤ (%) 24% 76% ইஜীࢎۈٜೱೞחҔ 1 ъթҳ
0.3041 2 ҳ 0.1353 3 ࢲୡҳ 0.1324 4 ١ನҳ 0.0874 5 ઙ۽ҳ 0.0784 6 ਊҳ 0.0657 7 ݃ನҳ 0.0369 8 ࣠ҳ 0.0318 9 ࢿزҳ 0.0282 10 ࢲޙҳ 0.0275 11 ҙঈҳ 0.0213 12 ъࢲҳ 0.0147 13 زҳ 0.0135 14 ࢿ࠘ҳ 0.0123 15 ҳ۽ҳ 0.0106
ࢲबসޖҳ $#%$FOUSBM#VTJOFTT%JTUSJDU ١ನ ҳ ઙ۽ ъթ
↟بद࢚সӝמػٜ ↟݆زबসޖҳܳबਵ۽ੌযդ ١ನ ъթ ҳ ઙ۽ ࢲबসޖҳ $#%$FOUSBM#VTJOFTT%JTUSJDU
١ನҳ Ӕ ࢲ թࢲଃী ݽৈ
ҳ,ઙ۽ҳ Ӕ ੌఠܳ ل۞ऱҊ ࢎۈٜ Ҋ
ъթҳ Ӕ ъթ সޖҳ৬ Ѣо ࢴৈח ݽण
बঠ ۽оࠇद
ࢎۈٜয٣ࢲೞܖܳ݃ޖܻೡө ঠр 23:00 ഐ ࣽਤ (%) 1 ъթҳ 2 ҳ
3 ࢲୡҳ 4 ઙ۽ҳ 5 ਊҳ 6 ݃ನҳ 7 ١ನҳ 8 ࢿزҳ 9 ࣠ҳ 10 ࢲޙҳ 11 ҙঈҳ 0.0109 12 زҳ 0.0101 13 ҟҳ 0.0079 14 ҳ۽ҳ 0.0065 15 ъࢲҳ 0.0064 ഐ ࢚ਤ 5ѐ ҳח ز ݻ %ܳ ରೡөਃ?
ࢎۈٜয٣ࢲೞܖܳ݃ޖܻೡө ঠр 23:00 ഐ ࣽਤ (%) 1 ъթҳ 0.4241 2
ҳ 0.1248 3 ࢲୡҳ 0.0982 4 ઙ۽ҳ 0.0791 5 ਊҳ 0.0783 6 ݃ನҳ 0.052 7 ١ನҳ 0.0435 8 ࢿزҳ 0.0216 9 ࣠ҳ 0.0159 10 ࢲޙҳ 0.0146 11 ҙঈҳ 0.0109 12 زҳ 0.0101 13 ҟҳ 0.0079 14 ҳ۽ҳ 0.0065 15 ъࢲҳ 0.0064 20% 80%
None
ࢎۈٜয٣ࢲೞܖܳ݃ޖܻೡө ঠр 23:00 ഐ ࣽਤ (%) 1 ъթҳ 0.1897 2
ࢲୡҳ 0.1086 3 ਊҳ 0.0817 4 ҙঈҳ 0.0741 5 ࣠ҳ 0.0694 6 ࢿزҳ 0.0694 7 ݃ನҳ 0.0667 8 زҳ 0.0607 9 ١ನҳ 0.0531 10 ҟҳ 0.0431 11 ҳ 0.0406 12 ࢿ࠘ҳ 0.0398 13 ࢲޙҳ 0.0379 14 ಣҳ 0.0339 15 ઙ۽ҳ 0.0312 ঠр 23:00 ب ࣽਤ (%) 1 ъթҳ 0.4241 2 ҳ 0.1248 3 ࢲୡҳ 0.0982 4 ઙ۽ҳ 0.0791 5 ਊҳ 0.0783 6 ݃ನҳ 0.052 7 ١ನҳ 0.0435 8 ࢿزҳ 0.0216 9 ࣠ҳ 0.0159 10 ࢲޙҳ 0.0146 11 ҙঈҳ 0.0109 12 زҳ 0.0101 13 ҟҳ 0.0079 14 ҳ۽ҳ 0.0065 15 ъࢲҳ 0.0064
बঠदр1. ߊ ب
ইஜदр". ߊ ب
ݽ࠽ܻ౭ؘఠ࠙ࢳоח۽যڃؘఠܳࠁաਃ Origin - Destination data • ౠ दр زউ যו
ࢎۈٜ য٣۽ زೞӡ ਗೞחо? • ࠂೠ بद ࣘ ز ಁఢী ೠ Ѫ
ݽ࠽ܻ౭ؘఠ࠙ࢳоח۽যڃؘఠܳࠁաਃ Origin - Destination data • ؘఠࣁ द id created_at_kr
status origin_lng origin_lat origin_gu destination_lng destination_lat dest_si dest_gu 1 2019-01-30T00:25:20 CANCELED 127.0414496 37.51002284 ъթҳ 127.1909267 37.56209539 ҃ӝ ೞթद 2 2019-011-27T15:37:40 ACCEPTED 127.0563954 37.54280202 ࢿزҳ 126.8721171 37.45949251 ҃ӝ ҟݺद 3 2019-09-16T17:52:19 ARRIVED_AT 127.0613762 37.51048997 ъթҳ 127.1375613 37.59445381 ҃ӝ ҳܻद 4 2019-04-22T19:43:07 PICKED_UP 127.1105661 37.51265727 ࣠ҳ 126.9714429 37.40572274 ҃ӝ উনद 5 2019-07-07T21:33:56 RIDING 127.0127873 37.49320677 ࢲୡҳ 127.0709374 37.27701722 ҃ӝ ਊੋद 6 2019-10-30T21:35:33 DROPPED_OFF 127.0018494 37.58132881 ࢿزҳ 127.1243009 37.32402575 ҃ӝ द 7 2019-09-27T21:41:36 DISPATCHING 127.0730746 37.5113235 ࣠ҳ 126.983202 37.39739958 ҃ӝ ৴द 8 2019-12-24T22:53:23 CANCELED 126.9696439 37.5635487 ҳ 126.9936623 37.43394209 ҃ӝ җୌद ഐ / ਤ҃ب ب / ਤ҃ب दр
ݽ࠽ܻ౭ؘఠ࠙ࢳоח۽যڃؘఠܳࠁաਃ Origin - Destination data • ؘఠࣁ द id created_at_kr
status origin_lng origin_lat origin_gu destination_lng destination_lat dest_si dest_gu 1 2019-01-30T00:25:20 CANCELED 127.0414496 37.51002284 ъթҳ 127.1909267 37.56209539 ҃ӝ ೞթद 2 2019-011-27T15:37:40 ACCEPTED 127.0563954 37.54280202 ࢿزҳ 126.8721171 37.45949251 ҃ӝ ҟݺद 3 2019-09-16T17:52:19 ARRIVED_AT 127.0613762 37.51048997 ъթҳ 127.1375613 37.59445381 ҃ӝ ҳܻद 4 2019-04-22T19:43:07 PICKED_UP 127.1105661 37.51265727 ࣠ҳ 126.9714429 37.40572274 ҃ӝ উনद 5 2019-07-07T21:33:56 RIDING 127.0127873 37.49320677 ࢲୡҳ 127.0709374 37.27701722 ҃ӝ ਊੋद 6 2019-10-30T21:35:33 DROPPED_OFF 127.0018494 37.58132881 ࢿزҳ 127.1243009 37.32402575 ҃ӝ द 7 2019-09-27T21:41:36 DISPATCHING 127.0730746 37.5113235 ࣠ҳ 126.983202 37.39739958 ҃ӝ ৴द 8 2019-12-24T22:53:23 CANCELED 126.9696439 37.5635487 ҳ 126.9936623 37.43394209 ҃ӝ җୌद ഐ ஂࣗ ٘ۄߡ ഐ ࣻۅ ٘ۄߡ ب थё थ ೯ थё ೞର ӝ ࢚క 다양한 상태 값을 가짐
2. ؘఠ۽ ಹח ݽ࠽ܻ౭ ޙઁ
https://dribbble.com/shots/4153309-The-Wait ޖоӝܻחܻݽण jj
ରഐ ରب ݾߊ ݾب Icons made by Freepik from www.flaticon.com
is licensed by CC 3.0 BY ఋ҃ৈ
ରഐ ରب ݾߊ ݾب Icons made by Freepik from www.flaticon.com
is licensed by CC 3.0 BY ఋ҃ৈ 데이터로 사용자 경험을 개선한 이야기
ETA ۆ? • Estimated time of arrival ( ࢚ ب
दр ) • ରਸ ഐೞҊ Ҋёীѱ بೞӝө ݽ࠽ܻ౭ী.-ਊೞӝ
ݽ࠽ܻ౭ী.-ਊೞӝ 주요 호출 취소 사유
&5"ޙઁܳ೧Ѿೞחߑߨٜ ରਸט۰ࢲ Әߑبೞѱ݅ٚ
ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ &5"ޙઁܳ೧Ѿೞחߑߨٜ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ࠙ੋؘ࠙ਵ۽ ցޖࠗഛೞ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ࠙ੋؘ࠙ਵ۽ ցޖࠗഛೞ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ تҗदрٚ അपੋޙઁ ؊ഛೠчਸઁҕ೧ঠೠ
&5"ޙઁܳ೧Ѿೞחߑߨٜ ݠन۞ ݽ؛ਸ ਊ೧ࠁ ࠙ੋؘ࠙ਵ۽ ցޖࠗഛೞ ࠙ױਤ۽߈ৢܿਸೠ ରਸט۰ࢲ Әߑبೞѱ݅ٚ
تҗदрٚ അपੋޙઁ ؊ഛೠчਸઁҕ೧ঠೠ
۽ંݾ ↟Ҋёীѱࠁഛೠ࢚بदрਸࠁৈ ↟ఎਸ݄Ҋ ࢲ࠺झਸ֫חੌ ӝઓ&5" ֎ߡ"1* ࠁ&5" .-ݽ؛ ↟ ٘ۄߡҗѢ೯ಁఢ
&5"ҙ۲ؘఠఐ࢝ दрীٮܲ&5"۪٘ ਘ߹ दр߹ 6ਘ ର ૐର റ хࣗ ୶ࣁ
Ӕ दр ృӔ दр
&5"ҙ۲ؘఠఐ࢝ ীٮܲಣӐ&5" Aҳ Bҳ
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝ ࢚ ب दрࠁ ןח ҃ೱࢿ
= SUM( ۄ٘ Ѥٜ पઁ ࣗਃ दр) / SUM( ۄ٘ Ѥٜ ࢚ ࣗਃ दр)
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝ ডр ןח ࢿೱ 1.0 ~
1.5
٘ۄߡী ٮܲ ಞରо &5"ҙ۲ؘఠఐ࢝ ן ঋח ࢿೱ
ࢎਊೠೖٜ ٘ۄߡןח҃ೱࢿ Ҋёডஂࣗా҅ ӝઓ&5" दр ਃੌ ର_ഐࢎѢܻ ਤب ҃ب ߸ࣻ
ਃب
ࢎਊೠೖٜ ٘ۄߡןח҃ೱࢿ Ҋёۄ٘ஂࣗా҅ ޖоࡐݡѪэו՝
ࢎਊೠೖٜ ٘ۄߡןח҃ೱࢿ Ҋёۄ٘ஂࣗా҅ ղо݅ٚݽ؛࠙ੌନয়חѪҗ࠙ੌନןѱѪਸҳ࠙ೞޅೣ അपੌନয়חѪҗןѱয়חѪೱܰ
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо • ੌ߈ਵ۽ ॳח MSE ࣚप ೣࣻ۽
णೠݶ • Ҋёীѱ ןח Ѫҗ ࡈܻ য়ח Ѫਸ ڙэ ੋध
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо • Ҋё ҃ী ؊ աࢂ ೱਸ
ח Ѫ ןѱ য়ח Ѫ • ٮۄࢲ ןѱ য়ח Ѫী ಕօ౭ܳ ؊ ب۾ • ࣚप ೣࣻܳ • ࠺ட ਤ (Asymmetrical risk) • ੌ߈ਵ۽ ॳח MSE ࣚप ೣࣻ۽ णೠݶ • Ҋёীѱ ןח Ѫҗ ࡈܻ য়ח Ѫਸ ڙэ ੋध
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо
ݽ࠽ܻ౭ী.-ਊೞӝ ಣо weight = 0.4 residual = y_true
- y_predict grad = np.where(residual<0, -2.0*residual, -2.0*weight*residual) য়ରо 0ࠁ ҃৬ ҃ী ಁօ౭ܳ ܰѱ ח ೣࣻܳ Params = { ‘objective’ : custom_asymmetric_objective } ݾೣࣻܳ ೠ ೣࣻ۽
ݽ࠽ܻ౭ী.-ਊೞӝ Ѿҗ
ݽ࠽ܻ౭ী.-ਊೞӝ Ѿҗ
ݽ࠽ܻ౭ী.-ਊೞӝ Ѿҗ
ݽ؛݂ ױ҅ীࢲ ו՛ Ѫ • അपী ਊೡ ٸח নೠ ٜਸ
ೣԋ Ҋ೧ঠೠ • ఋ ࢎ۹ • ഛب : MAE • ࠺פझ : п ࠺ਯਸ ծ୶ח Ѫ / Ҋё ҃ ೱ࢚ ഛب ࠺פझ ҙ ݽ࠽ܻ౭ী.-ਊೞӝ
ߓನ ળ࠺ ױ҅ ݽ࠽ܻ౭ী.-ਊೞӝ
ߓನ ળ࠺ ױ҅ • ݽ؛݂ ৮߷ೞѱ լ • ઁ ࣁ࢚ਵ۽
ղࠁղ ݽ࠽ܻ౭ী.-ਊೞӝ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA
ߓನ റ ݽ࠽ܻ౭ী.-ਊೞӝ
ঌ ࣻ হח ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • যڃ ࠙ನ ೖٜ ٜয৳חী
ೠ ۽Ӧਸ ೞ ঋও ࠁ ݽ؛ ӝઓ ETA ࠁ ETA
ঌ ࣻ হח ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ ࠗपೠ ۽Ӧ • पઁ ч
• ஏ ч • যڃ ࠙ನ ೖٜ ٜয৳חী ೠ ۽Ӧਸ ೞ ঋও • ٮۄࢲ ݽ؛ ৵ Ӓۧѱ ஏ೮ח ঌ ࣻо হ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA
ੌױ ܀ߔ ݽ࠽ܻ౭ী.-ਊೞӝ • ٘ۄ۠ - ࢲ࠺झীח ਊೞ ঋҊ पઁ
ജ҃ীࢲ పझ݅ ೯ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA ӝઓ ETA
ੌױ ܀ߔ ݽ࠽ܻ౭ী.-ਊೞӝ • ٘ۄ۠ - ࢲ࠺झীח ਊೞ ঋҊ पઁ
ജ҃ীࢲ పझ݅ ೯ • ࠻௪ܻ৬ క࠶۽۽ ݽפఠ݂ بҳܳ ݃۲ೞҊ ۽Ӓܳ ऺইࠆ ࠁ ݽ؛ ӝઓ ETA ࠁ ETA ӝઓ ETA
য়ܨо լ؍ ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • ਃೠ ೖ ೞաо ࢲ۽
ܲ ࠙ನܳ оҊ (ࢲ۽ ܲ ױਤ ޙઁ) Train ױ҅
য়ܨо լ؍ ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • ਃೠ ೖ ೞաо ࢲ۽
ܲ ࠙ನܳ оҊ (ࢲ۽ ܲ ױਤ ޙઁ) Train ױ҅ Test ױ҅
য়ܨо լ؍ ਗੋ ݽ࠽ܻ౭ী.-ਊೞӝ • ਃೠ ೖ ೞաо ࢲ۽
ܲ ࠙ನܳ о • ߓನ ী ݽפఠ݂ਸ ࠺೮ݶ Әߑ ೧Ѿ೮ਸ ޙઁ • ѐߊ৬ ഈস җীࢲ ࢎ ࣗా ޙઁ Train ױ҅ Test ױ҅
ݽ࠽ܻ౭ী.-ਊೞӝ য ؘఠࣇ ࠙ࢳ ߂ ݽ؛݂ য ಣо
(MAE,RMSE) ঌ؍ Ѫ
য ؘఠࣇ ࠙ࢳ ߂ ݽ؛݂ য ಣо (MAE,RMSE)
࠙ࢳ ߂ ݽ؛݂ ࢜۽ ೞח ಣо ࢜۽ ݅٘ח ؘఠࣇ ߓನ ߂ ݽפఠ݂ ঌ؍ Ѫ ೧ঠ೮؍ Ѫ ݽ࠽ܻ౭ী.-ਊೞӝ
2. ؘఠ۽ ಹח فߣ૩ ݽ࠽ܻ౭ ޙઁ
٘ۄߡоغযࠇद ࢚ടীࢲ ѐੋ ղܾ ࣻ ח ୭ ࢶఖ? ࢚
ࣻਃ
٘ۄߡоغযࠇद ѐੋ ౸ױೡ ࣻ ח ୭ ࢶఖ ࢚ ࣻਃ
Ӓۢ٘ۄߡоৈ۞ݺۄݶ ࢚ ࣻਃ
࢚ ࣻਃ بद ҙীࢲח ୭ ইצ Ѿҗ Ӓۢ٘ۄߡоৈ۞ݺۄݶ
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ ରബਯച
ҙ 'MFFU ীࢲ୭ࢶఖ ࢚ ࣻਃ ରബਯച ݠन۞दр߹߹ࣻਃPSҕәਸஏ ୭ചݽ؛ஏೠчܳ߄ఔਵ۽୭ച +
• Linear Programming • Integer Programming • Routing • Packing
• Network Flows • Assignment • Scheduling Operation research
• Linear Programming • Integer Programming • Routing • Packing
• Network Flows • Assignment • Scheduling Operation research
ݽ࠽ܻ౭৬୭ച
֎ਕ • ֢٘৬ ݂۽ ܖয ֎ਕ
֢٘ /PEF ೞӝ -20 -20 -20 -10 -50 -40 90
30 • ֢٘ח ౠೠ ۄҊ ೡ ࣻ • ҕә ֢٘ : թח ର ߊࢤೞח • ࣻਃ ֢٘ : ࣻਃо ߊࢤೞח
݂ -JOL ೞӝ • ݂ח ֢٘৬ ֢٘ܳ োѾೠ • ݂ܳ
ా೧ زਸ ೡ ҃ীח ࠺ਊ ߊࢤ • അपীࢲח Ѣܻ ࣗਃ दр 30 5 10 12 12 20 5 10
-20 -20 -20 -10 -50 -40 90 30 • ܻо
ೠ ֎ਕ 30 5 10 12 12 20 5 10 ֎ਕ
ݽ࠽ܻ౭৬୭ച ݂ ࠺ਊਸ п ֢٘ ҕәҗ ࣻਃܳ ࣛߡܳ
ࢶೞҊ, ֎ਕܳ ҳࢿ https://developers.google.com/optimization/flow/mincostflow
-20 -10 -50 -40 90 30 ݽ࠽ܻ౭৬୭ച • ࠺ਊਸ ୭ࣗചೞݶࢲ
ҕә ֢٘ীࢲ ࣻਃ ֢٘۽ زदఃח ߑध • Min cost flow problem
ݽ࠽ܻ౭৬୭ച 0 4 5 3 1 2 20 10 50
40 50 • ࣛߡ(Solver)о ળ
ݽ࠽ܻ౭৬୭ച 0 4 5 3 1 2 20 10 50
40 50 • ࣛߡ(Solver)о ળ • അपীࢲ Ҋ۰೧ঠೡ ࢎ೦ٜ • ز ী ൧ ࣻب • ҕә োࣘਵ۽ ߊࢤೠ
3. ഥҊ
.-ݽ؛ਸ݅٘חѪҗपઁജ҃ীࢲ࠺झೞחѪ ݽ؛݂ Ӓ റܳ ࢤпೞӝ • ߓನ റীب উਵ۽ ҙܻೡ
ࣻ ח ജ҃ਸ ݃۲೧فח Ѫ ਃ (ݽפఠ݂) ࢚ടী ݏח ݾೣࣻ ӝ • ਃೞݶ ࣚप ೣࣻܳ ೧ঠೡ ࣻب • Objective is subjective !
بݫੋীҙೠঠӝ ־ҳաীѱ ਸ п بݫੋ • ೧ بݫੋীࢲח ݠन۞, ٩۞
ࠗо ইק ࣻ Ҋ • ܲ ӝߨٜҗ ೣԋ ॳৈঠ ࡄਸ ߊೡ ٸо ח Ѫ э
ۨਃࢿ ഒࢲ ݽٚ Ѫਸ ೡ ࣻח হӝী • ؘఠূפয +
ؘఠ࠙ࢳо + ѐߊ + • নೠ ҵ ࢎۈٜҗ ഈসਵ۽ ޙઁܳ ೧Ѿ೧աоҊ ߸ਵ۽ࠗఠ ݆ ߓӝ • જ ࢎࣻ, ܲ ҵ زܐ
ߊܳب৬दҊ ೦࢚хਸחLZMF https://zzsza.github.io/
ਊ ؘఠӒܛ • ఋؘఠ • ؘఠࢎझ • оѺۚ • ؘఠূפয݂
• URL : bit.ly/ؘఠঠ֥॑ਊ ؘఠ • ؘఠূפয • ؘఠࢎ౭झ • URL : https://tadacareer.vcnc.co.kr/
хࢎפ