Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
knowledge base fot amazon bedrockを使って、格安でRAG作ってみた
Search
そのだ
January 27, 2024
Technology
1
950
knowledge base fot amazon bedrockを使って、格安でRAG作ってみた
【doorkeeper】
https://jawsug-saga.doorkeeper.jp/events/166448
そのだ
January 27, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
生成AIアプリのアップデートと配布の課題をCDK Pipelinesで解決してみた
sonoda_mj
0
350
AWSでRAGを作る方法
sonoda_mj
1
320
緑一色アーキテクチャ
sonoda_mj
1
180
RAG構築におけるKendraとPineconeの使い分け
sonoda_mj
2
640
検索拡張生成(RAG)をAWSで作る方法
sonoda_mj
1
370
BedrockのToo Many Request解決してみた
sonoda_mj
2
2.3k
AmazonBedrockを使用した自作RAGの作り方
sonoda_mj
1
930
会社の公開ページとKnowledge Base for Amazon Bedrockを使ってRAG作ってみた
sonoda_mj
0
280
Step Functionsを使ってノーコードでDynamoDBにPutItemしてみた
sonoda_mj
2
470
Other Decks in Technology
See All in Technology
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
360
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
1.1k
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
410
Terraform Stacks入門 #HashiTalks
msato
0
360
ExaDB-D dbaascli で出来ること
oracle4engineer
PRO
0
3.9k
【令和最新版】AWS Direct Connectと愉快なGWたちのおさらい
minorun365
PRO
5
750
iOSチームとAndroidチームでブランチ運用が違ったので整理してます
sansantech
PRO
0
140
第1回 国土交通省 データコンペ参加者向け勉強会③- Snowflake x estie編 -
estie
0
130
VideoMamba: State Space Model for Efficient Video Understanding
chou500
0
190
いざ、BSC討伐の旅
nikinusu
2
780
社内で最大の技術的負債のリファクタリングに取り組んだお話し
kidooonn
1
550
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
Featured
See All Featured
BBQ
matthewcrist
85
9.3k
A better future with KSS
kneath
238
17k
Code Review Best Practice
trishagee
64
17k
GraphQLの誤解/rethinking-graphql
sonatard
67
10k
Building an army of robots
kneath
302
43k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
6.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
[RailsConf 2023] Rails as a piece of cake
palkan
52
4.9k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.3k
Designing the Hi-DPI Web
ddemaree
280
34k
Transcript
Knowledge Base for Amazon Bedrockと Pineconeを使って、格安でRAG作ってみた 【オフライン】JAWS-UG佐賀 2024年新年会LT 〜佐賀のエンジニアで乾杯︕〜 2024.1.27
苑⽥朝彰 1
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - ソフトウェアエンジニアリング - 新卒3年⽬ - Skill - AWS/React(Native)/Ruby on Rails 2
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - ソフトウェアエンジニアリング - 新卒3年⽬ - Skill - AWS/React(Native)/Ruby on Rails 3
アジェンダ 4 l 背景 l 事前知識 l knowledge base for
amazon bedrockとPineconeを使って、格安で RAG作ってみた l まとめ
01 背景
RAG面白そうだから 作ってみたい!!
従来のAWSにおけるRAG 7 引用:https://aws.amazon.com/jp/blogs/news/quickly-build-high-accuracy-generative-ai-applications- on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/
従来のAWSにおけるRAG 8 引用:https://aws.amazon.com/jp/blogs/news/quickly-build-high-accuracy-generative-ai-applications- on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/ 試すにはちょっと 高い。。。
ほっ…ほなVectorDBだけ安くし て、処理部分を自分で作ろう!
コサイン類似度 Embedding Model
コサイン類似度 Embedding Model ML初心者にはしんどい
手軽に安く作れる方法 はないんか!!
None
なんか簡単に作れそう
これ使ってみよか〜
できるだけ工数やお金をかけずに RAGを作って遊びたい!!
02 事前知識
事前知識 18 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
事前知識 19 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
検索拡張⽣成(RAG)とは 20 Retrieval Augmented Generation(RAG) 生成系の言語 AI モデルに外部メモリをつけるというコンセプトのことを指す Vector Database
LLM 質問 検索 返答 検索結果 引用:https://github.com/aws-samples/jp-rag-sample
検索拡張⽣成(RAG)とは 21 事前に学習したデータに関しては返答することができる AWSについて教えて AWSってのはな・・・ LLM
検索拡張⽣成(RAG)とは 22 しかし、学習していない内容に関しては答えられない 苑田について教えて 誰やねん 私の知識はxxxx年まででぇ〜
検索拡張⽣成(RAG)とは 23 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田について教えて 新しいデータをベクトル化 して格納
検索拡張⽣成(RAG)とは 24 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 近いベクトルを探す 「苑田について教えて」を ベクトル化
検索拡張⽣成(RAG)とは 25 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 検索結果を返す
検索拡張⽣成(RAG)とは 26 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田ってのはな
事前知識 27 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
Bedrockとは 28 "*-BCTɺ"OUISPQJDɺ$PIFSFɺ.FUBɺ4UBCJMJUZ"*ɺ"NB[POͳͲͷେख "*اۀ͕ఏڙ͢Δ ߴੑೳͳج൫Ϟσϧ '. Λ୯Ұͷ "1*ͰબͰ͖ΔϑϧϚωʔδυܕαʔϏε ↓これらのmodelのAPIが使える
Knowledge Base for Amazon Bedrockとは 29 "NB[PO#FESPDLͷφϨοδϕʔεΛ༻͢Δͱɺ"NB[PO#FESPDL͔Β '.Λσʔλιʔ εʹଓͯ͠ݕࡧ֦ுੜ 3"(
Λߦ͏͜ͱ͕Ͱ͖Δɻ͜ΕʹΑΓɺ'.ͷطଘͷڧྗͳػೳΛ ֦ு͠ɺಛఆͷυϝΠϯ৫ʹؔ͢ΔࣝΛਂΊΔ͜ͱ͕Ͱ͖Δɻ 引用:https://aws.amazon.com/jp/bedrock/knowledge-bases/
データの前処理 30 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ドキュメントを管理しやすいチャンクに分割し、効率的に取得できるようにする • ドキュメントをEmbedding Modelを使用してベクトル化する • Vector
DBに格納する Cohere
ランタイム実⾏ 31 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ユーザーのクエリをベクトル化する • ドキュメントのベクトルと比較し、意味的に類似したチャンクが検索される • 取得されたチャンクからの追加のコンテキストで拡張される Cohere
Claude
Knowledge Baseについて詳しく 32 or or Vector Database Data Source S3
Bedrock User LLM 様々な情報を入れる コードを書かなくとも一括で作成してくれる(S3以外) or
事前知識 33 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
Pineconeとは 34 ベクトルを保存するためのデータベース(freeプランを使用) 引用:https://www.pinecone.io/product/
03 knowledge base for amazon bedrock を使って、格安でRAG作ってみた
データソース 36 Fusicのメンバー紹介(全員分) 参考: https://fusic.co.jp/members/108
Slack Bedrock 苑田(webにない情報) って誰ですか?
Slack Bedrock 苑田って何ですか?
Slack Bedrock 苑田というのは。。。
Slack Bedrock 苑田というのは。。。
構成図 41
構成図 42 構築の手間がかからない
構成図 43 フリープランなら無料
構成図 44 モデル 入力トークン 1,000 個あたり 出力トークン 1,000 個あたり Claude
0.00800 USD 0.02400 USD Cohere(埋め込み — 多言語) 0.0001 USD 該当なし
構成図 45 モデル 入力トークン 1,000 個あたり 出力トークン 1,000 個あたり Claude
0.00800 USD 0.02400 USD Cohere(埋め込み — 多言語) 0.0001 USD 該当なし め っ ち ゃ 安 い !
デモ
04 まとめ
まとめ Knowledge Base for Bedrockを使⽤することで、簡単にRAGを構築することができた Point 2 Pineconeを使⽤することで、⽐較的安く構築することができた 48 Point
1 Point 3 SlackでRAGを簡単に使⽤することができた
ご清聴いただきありがとうございました Thank You We are Hiring ! https://recruit.fusic.co.jp/