Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
knowledge base fot amazon bedrockを使って、格安でRAG作ってみた
Search
そのだ
January 27, 2024
Technology
1
1.8k
knowledge base fot amazon bedrockを使って、格安でRAG作ってみた
【doorkeeper】
https://jawsug-saga.doorkeeper.jp/events/166448
そのだ
January 27, 2024
Tweet
Share
More Decks by そのだ
See All by そのだ
Google_ADKのSub_AgentをAgentic_Workflowに移行し_遷移成功率を改善した話.pdf
sonoda_mj
1
44
仕事はAIに任せてラスベガスへ行きたいのでDSPyで自分のクローンを作った
sonoda_mj
1
120
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
6
2.3k
RAGの基礎から実践運用まで:AWS BedrockとLangfuseで実現する構築・監視・評価
sonoda_mj
1
1.5k
Amazon Bedrock Knowledge Basesに Data Autometionを導入してみた
sonoda_mj
1
180
Amazon Bedrock Knowledge basesにLangfuse導入してみた
sonoda_mj
2
1.1k
AIエージェントに脈アリかどうかを分析させてみた
sonoda_mj
2
390
Amazon Bedrock Knowledge Basesのアップデート紹介
sonoda_mj
2
780
Snowflake未経験の人がSnowflakeに挑戦してみた
sonoda_mj
1
250
Other Decks in Technology
See All in Technology
GitHub Copilot CLI を使いやすくしよう
tsubakimoto_s
0
110
SREチームをどう作り、どう育てるか ― Findy横断SREのマネジメント
rvirus0817
0
350
AWS Network Firewall Proxyを触ってみた
nagisa53
1
250
pool.ntp.orgに ⾃宅サーバーで 参加してみたら...
tanyorg
0
1.3k
私たち準委任PdEは2つのプロダクトに挑戦する ~ソフトウェア、開発支援という”二重”のプロダクトエンジニアリングの実践~ / 20260212 Naoki Takahashi
shift_evolve
PRO
2
210
Tebiki Engineering Team Deck
tebiki
0
24k
Amazon Bedrock Knowledge Basesチャンキング解説!
aoinoguchi
0
170
旅先で iPad + Neovim で iOS 開発・執筆した話
zozotech
PRO
0
100
【Oracle Cloud ウェビナー】[Oracle AI Database + AWS] Oracle Database@AWSで広がるクラウドの新たな選択肢とAI時代のデータ戦略
oracle4engineer
PRO
2
190
AI駆動開発を事業のコアに置く
tasukuonizawa
1
400
Context Engineeringの取り組み
nutslove
0
380
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
610
Featured
See All Featured
The Art of Programming - Codeland 2020
erikaheidi
57
14k
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
170
Balancing Empowerment & Direction
lara
5
900
Designing for humans not robots
tammielis
254
26k
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
280
Technical Leadership for Architectural Decision Making
baasie
2
250
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
68
Impact Scores and Hybrid Strategies: The future of link building
tamaranovitovic
0
200
The Curious Case for Waylosing
cassininazir
0
240
Discover your Explorer Soul
emna__ayadi
2
1.1k
Google's AI Overviews - The New Search
badams
0
910
Transcript
Knowledge Base for Amazon Bedrockと Pineconeを使って、格安でRAG作ってみた 【オフライン】JAWS-UG佐賀 2024年新年会LT 〜佐賀のエンジニアで乾杯︕〜 2024.1.27
苑⽥朝彰 1
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - ソフトウェアエンジニアリング - 新卒3年⽬ - Skill - AWS/React(Native)/Ruby on Rails 2
⾃⼰紹介 苑⽥ 朝彰 Sonoda Tomotada - ID - Github︓tomomj -
Twitter︓@sonoda_mj - Work at - 株式会社 Fusic (フュージック) 技術創造部⾨所属 - ソフトウェアエンジニアリング - 新卒3年⽬ - Skill - AWS/React(Native)/Ruby on Rails 3
アジェンダ 4 l 背景 l 事前知識 l knowledge base for
amazon bedrockとPineconeを使って、格安で RAG作ってみた l まとめ
01 背景
RAG面白そうだから 作ってみたい!!
従来のAWSにおけるRAG 7 引用:https://aws.amazon.com/jp/blogs/news/quickly-build-high-accuracy-generative-ai-applications- on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/
従来のAWSにおけるRAG 8 引用:https://aws.amazon.com/jp/blogs/news/quickly-build-high-accuracy-generative-ai-applications- on-enterprise-data-using-amazon-kendra-langchain-and-large-language-models/ 試すにはちょっと 高い。。。
ほっ…ほなVectorDBだけ安くし て、処理部分を自分で作ろう!
コサイン類似度 Embedding Model
コサイン類似度 Embedding Model ML初心者にはしんどい
手軽に安く作れる方法 はないんか!!
None
なんか簡単に作れそう
これ使ってみよか〜
できるだけ工数やお金をかけずに RAGを作って遊びたい!!
02 事前知識
事前知識 18 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
事前知識 19 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
検索拡張⽣成(RAG)とは 20 Retrieval Augmented Generation(RAG) 生成系の言語 AI モデルに外部メモリをつけるというコンセプトのことを指す Vector Database
LLM 質問 検索 返答 検索結果 引用:https://github.com/aws-samples/jp-rag-sample
検索拡張⽣成(RAG)とは 21 事前に学習したデータに関しては返答することができる AWSについて教えて AWSってのはな・・・ LLM
検索拡張⽣成(RAG)とは 22 しかし、学習していない内容に関しては答えられない 苑田について教えて 誰やねん 私の知識はxxxx年まででぇ〜
検索拡張⽣成(RAG)とは 23 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田について教えて 新しいデータをベクトル化 して格納
検索拡張⽣成(RAG)とは 24 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 近いベクトルを探す 「苑田について教えて」を ベクトル化
検索拡張⽣成(RAG)とは 25 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 検索結果を返す
検索拡張⽣成(RAG)とは 26 外部のデータベースなどを紐づけることで、新しい情報やプライベートの情報に関す る回答を生成することができる Vector Database 苑田ってのはな
事前知識 27 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
Bedrockとは 28 "*-BCTɺ"OUISPQJDɺ$PIFSFɺ.FUBɺ4UBCJMJUZ"*ɺ"NB[POͳͲͷେख "*اۀ͕ఏڙ͢Δ ߴੑೳͳج൫Ϟσϧ '. Λ୯Ұͷ "1*ͰબͰ͖ΔϑϧϚωʔδυܕαʔϏε ↓これらのmodelのAPIが使える
Knowledge Base for Amazon Bedrockとは 29 "NB[PO#FESPDLͷφϨοδϕʔεΛ༻͢Δͱɺ"NB[PO#FESPDL͔Β '.Λσʔλιʔ εʹଓͯ͠ݕࡧ֦ுੜ 3"(
Λߦ͏͜ͱ͕Ͱ͖Δɻ͜ΕʹΑΓɺ'.ͷطଘͷڧྗͳػೳΛ ֦ு͠ɺಛఆͷυϝΠϯ৫ʹؔ͢ΔࣝΛਂΊΔ͜ͱ͕Ͱ͖Δɻ 引用:https://aws.amazon.com/jp/bedrock/knowledge-bases/
データの前処理 30 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ドキュメントを管理しやすいチャンクに分割し、効率的に取得できるようにする • ドキュメントをEmbedding Modelを使用してベクトル化する • Vector
DBに格納する Cohere
ランタイム実⾏ 31 引用:https://docs.aws.amazon.com/bedrock/latest/userguide/knowledge-base.html • ユーザーのクエリをベクトル化する • ドキュメントのベクトルと比較し、意味的に類似したチャンクが検索される • 取得されたチャンクからの追加のコンテキストで拡張される Cohere
Claude
Knowledge Baseについて詳しく 32 or or Vector Database Data Source S3
Bedrock User LLM 様々な情報を入れる コードを書かなくとも一括で作成してくれる(S3以外) or
事前知識 33 l 検索拡張生成(RAG)とは l Knowledge Base For Amazon Bedrockとは
l Pineconeとは
Pineconeとは 34 ベクトルを保存するためのデータベース(freeプランを使用) 引用:https://www.pinecone.io/product/
03 knowledge base for amazon bedrock を使って、格安でRAG作ってみた
データソース 36 Fusicのメンバー紹介(全員分) 参考: https://fusic.co.jp/members/108
Slack Bedrock 苑田(webにない情報) って誰ですか?
Slack Bedrock 苑田って何ですか?
Slack Bedrock 苑田というのは。。。
Slack Bedrock 苑田というのは。。。
構成図 41
構成図 42 構築の手間がかからない
構成図 43 フリープランなら無料
構成図 44 モデル 入力トークン 1,000 個あたり 出力トークン 1,000 個あたり Claude
0.00800 USD 0.02400 USD Cohere(埋め込み — 多言語) 0.0001 USD 該当なし
構成図 45 モデル 入力トークン 1,000 個あたり 出力トークン 1,000 個あたり Claude
0.00800 USD 0.02400 USD Cohere(埋め込み — 多言語) 0.0001 USD 該当なし め っ ち ゃ 安 い !
デモ
04 まとめ
まとめ Knowledge Base for Bedrockを使⽤することで、簡単にRAGを構築することができた Point 2 Pineconeを使⽤することで、⽐較的安く構築することができた 48 Point
1 Point 3 SlackでRAGを簡単に使⽤することができた
ご清聴いただきありがとうございました Thank You We are Hiring ! https://recruit.fusic.co.jp/