Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWS の生成 AI への取り組みと IoT との付き合い方
Search
SORACOM
PRO
December 15, 2023
Technology
0
2.3k
AWS の生成 AI への取り組みと IoT との付き合い方
2023年12月15日開催『
JAWS-UG IoT専門支部「re:Invent振り返りとAmazon Monitron」
』で、ソラコム松下(max)が発表した資料です。
SORACOM
PRO
December 15, 2023
Tweet
Share
More Decks by SORACOM
See All by SORACOM
【SORACOM UG Explorer 2025】さらなる10年へ ~ SORACOM MVC 発表
soracom
PRO
0
180
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
840
投資家様向けビジネス概要<2025年8月版>
soracom
PRO
0
460
Business Overview for Investors[August 2025 Edition]
soracom
PRO
0
63
少人数・短期間で実現!“ゼロから作らない” 4つの事例から見る、新時代IoT【SORACOM Discovery 2025】
soracom
PRO
0
320
現場のリアルをカメラで変える!小売・商業施設の「現場改革」最前線【SORACOM Discovery 2025】
soracom
PRO
0
300
【特別講演】公開思考実験!もしも、この世界から「ヒトとモノのつながり」が消えたなら?【SORACOM Discovery 2025】
soracom
PRO
0
170
トヨタのIoT民主化を支援!「D-ROOM」の仕組みと現場浸透のくふう【SORACOM Discovery 2025】
soracom
PRO
0
390
クラウド全盛時代におけるIoTエッジ活用とグローバルサプライチェーン戦略【SORACOM Discovery 2025】
soracom
PRO
0
190
Other Decks in Technology
See All in Technology
AI機能プロジェクト炎上の 3つのしくじりと学び
nakawai
0
180
AI時代の発信活動 ~技術者として認知してもらうための発信法~ / 20251028 Masaki Okuda
shift_evolve
PRO
1
130
猫でもわかるAmazon Q Developer CLI 解体新書
kentapapa
1
180
20251024_TROCCO/COMETAアップデート紹介といくつかデモもやります!_#p_UG 東京:データ活用が進む組織の作り方
soysoysoyb
0
140
abema-trace-sampling-observability-cost-optimization
tetsuya28
0
390
How Fast Is Fast Enough? [PerfNow 2025]
tammyeverts
2
180
ヘンリー会社紹介資料(エンジニア向け) / company deck for engineer
henryofficial
0
430
AWSが好きすぎて、41歳でエンジニアになり、AAIを経由してAWSパートナー企業に入った話
yama3133
2
210
Okta Identity Governanceで実現する最小権限の原則
demaecan
0
210
AIでデータ活用を加速させる取り組み / Leveraging AI to accelerate data utilization
okiyuki99
6
1.5k
激動の時代を爆速リチーミングで乗り越えろ
sansantech
PRO
1
190
20251029_Cursor Meetup Tokyo #02_MK_「あなたのAI、私のシェル」 - プロンプトインジェクションによるエージェントのハイジャック
mk0721
PRO
6
2.1k
Featured
See All Featured
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
The Cult of Friendly URLs
andyhume
79
6.6k
Navigating Team Friction
lara
190
15k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
900
GraphQLとの向き合い方2022年版
quramy
49
14k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Done Done
chrislema
185
16k
Become a Pro
speakerdeck
PRO
29
5.6k
Being A Developer After 40
akosma
91
590k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.2k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.1k
Transcript
AWS の生成 AI への取り組みと IoT との付き合い方 Dec. 15, 2023 JAWS-UG
IoT 専門支部 株式会社ソラコム テクノロジー・エバンジェリスト 松下 享平 (Max / @ma2shita)
株式会社ソラコム テクノロジー・エバンジェリスト 松下 享平 (まつした こうへい) "Max" • 静岡県民 🗻
新幹線通勤族 🚅 • 講演や執筆を中心に活動、登壇数600以上/累計 • 経歴: 東証二部ハードウェアメーカーで情シス、 EC 事業、IoT 事業開発を経て2017年より現職 • 好きな言葉「論よりコード」 • AWS ヒーロー (2020年受賞) • X(旧Twitter): @ma2shita • 好きな AWS サービス AWS IoT Core Amazon Ember Fonts Amazon EventBridge Pipes ← NEW!! • 最近 Pixel 8 に変えました ← NEW!! WiJG?, Public domain, via Wikimedia Commons
#jawsug #jawsug_iot https://twitter.com/jawsug_iot
現場ニーズに応えた、正統な進化 ― SORACOM 公式ブログで公開中 https://blog.soracom.com/ja-jp/2023/12/15/report-of-aws-reinvent-2023/
Reinventing … ~の再発明 https://www.youtube.com/watch?v=PMfn9_nTDbM&t=570s https://www.youtube.com/watch?v=PMfn9_nTDbM&t=700s https://www.youtube.com/watch?v=PMfn9_nTDbM&t=950s
https://www.youtube.com/watch?v=PMfn9_nTDbM&t=1188s
Reinventing with … “再発明” のための手段
https://www.youtube.com/watch?v=PMfn9_nTDbM&t=1188s
Reinventing with generative AI Reinventing with AWS
“AI” における生成 AI (GenAI) の位置づけ 生成 AI (Generative AI; GenAI)
• 機械学習(ML) における分類「識別モデル」と「生成モデル」のうち、生成に着目した呼称。 • 実装例には、画像を生成するモデルや、自然言語を扱う大規模言語モデル(LLM)がある。 出典: 西脇 文彦. “生成AIが実現している機能の6類型”. DIAMOND ハーバード・ビジネス・レビュー. 2023-06-09. https://dhbr.diamond.jp/articles/-/9676, (参照 2023-08-10). 従来の ML や深層学習(DL)と異なる点 ➢ これまでは「学習」と「推論(生成)」の2つの作業が 不可欠。特に学習は専門知識や費用が必要だった。 ➢ 生成 AI は学習済みモデル(基盤モデル)が提供され、 利用者による学習作業が不要で、成果が得られる。
None
基盤モデル = “常識” 株式会社スマートドライブ主催「Mobility Transformation 2023」(9/23) より 基盤モデルとは 大量かつ多様なデータで訓練され、 多様な用途におけるタスクに適応
できるモデル※1 ※1 Stanford University Human-Centered Artificial Intelligence, Machine Learning Reflections on Foundation Models 人間の経験や知識の如く 「常識を獲得」
None
Amazon Bedrock ― 基盤モデル選択の自由 https://www.youtube.com/watch?v=8clH7cbnIQw&t=1390s
AWS の「Generative AI Stack」 https://www.youtube.com/watch?v=PMfn9_nTDbM&t=6470s 基盤モデル強化のための「インフラ」 基盤モデルやLLMで構築するための「ツール」 ➢ Amazon Bedrock
基盤モデルを活かすための「アプリケーション」 ➢ Amazon Q、Amazon CodeWhisperer
https://aws.amazon.com/jp/blogs/news/aws-reinvent-recap-aiml-seminar-for-biopharma/ AWS の「Stack」戦略の読み解き方 “Stack” で「言語化」 そこから広げていく 新たなサービス予想や 要望の通り方の見通しが立つ https://docs.aws.amazon.com/ja_jp/iot/latest/developerguide/aws-iot-how-it-works.html
生成 AI との付き合い方 Copilot ー よき友 Whisper 等 ChatGPT 以外のプロダクト利用、
GPTs(GPT Builder)、RAG 等 Function Calling、Assistant API Azure OpenAI Service、Amazon Bedrock 等 私たちの生産性を上げる Embed ー 部品 製品に革新を組み込む
Copilot ― よき友 開発や業務支援に LLM を用いる ➢ ドキュメント要約やレビュー • 途中参加PJに対する議事録要約
や検索、専門用語の読み替えを RAG(検索拡張生成) で実現する ➢ コードや回路の設計、生成 ➢ デバッグ計画のドラフト ※ RAG: Retrieval Augmented Generation; 検索拡張生成 ※ プロンプトや取り込ませるデータがどのように取り扱われるかは、規約や構成を確認する必要あり
Copilot ― よき友 開発や業務支援に LLM を用いる AWS IoT TwinMaker で
故障個所を明確化 Amazon Q で行うべき作業の提示や、 問い合わせ回答を自動化 ※ EXPO 内 AWS “Industrial Zone” デモ
ビジネスで用いられるどのテクノロジーにも当てはまる第一の法則は、 効率の良い業務を自動化すれば、効率がさらに良くなるということだ。 第二の法則は、効率の悪い業務を自動化すれば、さらに効率が悪くなる ということだ ― 『ビル・ゲイツ 未来を語る』 ― 外山, 健.
(2016). テクノロジーは貧困を救わない. 日本: みすず書房. ※下線と太字は筆者加筆
None
IoT の「つなぐ」を簡単に You Create. We Connect.