Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gradient Descent Easy
Search
soulchild
July 23, 2014
Science
0
83
Gradient Descent Easy
Easy/brief version of Gradient Descent from Artificial Intelligence Lecture
soulchild
July 23, 2014
Tweet
Share
More Decks by soulchild
See All by soulchild
Similarities between macOS and iOS development
soulchild
0
120
N Tier Architecture for MMORPG
soulchild
0
93
Other Decks in Science
See All in Science
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
140
データベース15: ビッグデータ時代のデータベース
trycycle
PRO
0
440
HajimetenoLT vol.17
hashimoto_kei
1
170
MCMCのR-hatは分散分析である
moricup
0
590
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
170
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
410
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
160
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
(2025) Balade en cyclotomie
mansuy
0
450
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
520
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
200
Featured
See All Featured
Winning Ecommerce Organic Search in an AI Era - #searchnstuff2025
aleyda
0
1.9k
Designing for humans not robots
tammielis
254
26k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.6k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
Leo the Paperboy
mayatellez
4
1.4k
Done Done
chrislema
186
16k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
WENDY [Excerpt]
tessaabrams
9
36k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
The Curious Case for Waylosing
cassininazir
0
230
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
80
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Transcript
Artificial Intelligence Gradient Descent soulchild
Gradient Descent Let computer find the minimum point in a
given graph or equation
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point How does a computer know that this is a minimum point?
Gradient Descent Ans : By brute-forcing the derivative until a
value equal or near to 0 is found y = x2 dy dx = 2x Then guess x by starting from, eg: -6 to 6
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0 Minimum point found, stop
Gradient Descent A better way to brute force
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent How to set a good learning rate (α)
?
Gradient Descent When to stop searching ?
Gradient Descent When to stop searching ? Set a maximum
number of iteration
Gradient Descent When to stop searching ? Set a maximum
number of iteration dy dx < n When n can be 0.1, 0.01,.. etc
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding What about this?! smaller than previous point wor
Gradient Descent Weakness of Gradient Descent Gradient Descent may stuck
in a local minima thus can’t find the global minima
Gradient Descent Q&A