Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gradient Descent Easy
Search
soulchild
July 23, 2014
Science
0
83
Gradient Descent Easy
Easy/brief version of Gradient Descent from Artificial Intelligence Lecture
soulchild
July 23, 2014
Tweet
Share
More Decks by soulchild
See All by soulchild
Similarities between macOS and iOS development
soulchild
0
120
N Tier Architecture for MMORPG
soulchild
0
93
Other Decks in Science
See All in Science
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1k
データベース03: 関係データモデル
trycycle
PRO
1
320
Vibecoding for Product Managers
ibknadedeji
0
120
力学系から見た現代的な機械学習
hanbao
3
3.6k
研究って何だっけ / What is Research?
ks91
PRO
2
160
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
データベース01: データベースを使わない世界
trycycle
PRO
1
920
Performance Evaluation and Ranking of Drivers in Multiple Motorsports Using Massey’s Method
konakalab
0
120
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
390
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
データマイニング - グラフデータと経路
trycycle
PRO
1
260
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.4k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Typedesign – Prime Four
hannesfritz
42
2.9k
Bash Introduction
62gerente
615
210k
The Language of Interfaces
destraynor
162
25k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
Designing Experiences People Love
moore
143
24k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Navigating Team Friction
lara
191
16k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Transcript
Artificial Intelligence Gradient Descent soulchild
Gradient Descent Let computer find the minimum point in a
given graph or equation
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point How does a computer know that this is a minimum point?
Gradient Descent Ans : By brute-forcing the derivative until a
value equal or near to 0 is found y = x2 dy dx = 2x Then guess x by starting from, eg: -6 to 6
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0 Minimum point found, stop
Gradient Descent A better way to brute force
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent How to set a good learning rate (α)
?
Gradient Descent When to stop searching ?
Gradient Descent When to stop searching ? Set a maximum
number of iteration
Gradient Descent When to stop searching ? Set a maximum
number of iteration dy dx < n When n can be 0.1, 0.01,.. etc
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding What about this?! smaller than previous point wor
Gradient Descent Weakness of Gradient Descent Gradient Descent may stuck
in a local minima thus can’t find the global minima
Gradient Descent Q&A