Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gradient Descent Easy
Search
soulchild
July 23, 2014
Science
0
83
Gradient Descent Easy
Easy/brief version of Gradient Descent from Artificial Intelligence Lecture
soulchild
July 23, 2014
Tweet
Share
More Decks by soulchild
See All by soulchild
Similarities between macOS and iOS development
soulchild
0
120
N Tier Architecture for MMORPG
soulchild
0
93
Other Decks in Science
See All in Science
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
190
データベース08: 実体関連モデルとは?
trycycle
PRO
0
1k
データベース03: 関係データモデル
trycycle
PRO
1
330
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
180
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1.1k
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
HDC tutorial
michielstock
1
300
機械学習 - DBSCAN
trycycle
PRO
0
1.4k
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
360
検索と推論タスクに関する論文の紹介
ynakano
1
120
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
(2025) Balade en cyclotomie
mansuy
0
370
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Why Our Code Smells
bkeepers
PRO
340
58k
The Language of Interfaces
destraynor
162
26k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
45
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Bridging the Design Gap: How Collaborative Modelling removes blockers to flow between stakeholders and teams @FastFlow conf
baasie
0
420
Leveraging Curiosity to Care for An Aging Population
cassininazir
1
140
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.3k
Code Reviewing Like a Champion
maltzj
527
40k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
97
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
110
From π to Pie charts
rasagy
0
100
Transcript
Artificial Intelligence Gradient Descent soulchild
Gradient Descent Let computer find the minimum point in a
given graph or equation
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point How does a computer know that this is a minimum point?
Gradient Descent Ans : By brute-forcing the derivative until a
value equal or near to 0 is found y = x2 dy dx = 2x Then guess x by starting from, eg: -6 to 6
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0 Minimum point found, stop
Gradient Descent A better way to brute force
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent How to set a good learning rate (α)
?
Gradient Descent When to stop searching ?
Gradient Descent When to stop searching ? Set a maximum
number of iteration
Gradient Descent When to stop searching ? Set a maximum
number of iteration dy dx < n When n can be 0.1, 0.01,.. etc
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding What about this?! smaller than previous point wor
Gradient Descent Weakness of Gradient Descent Gradient Descent may stuck
in a local minima thus can’t find the global minima
Gradient Descent Q&A