Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gradient Descent Easy
Search
soulchild
July 23, 2014
Science
0
82
Gradient Descent Easy
Easy/brief version of Gradient Descent from Artificial Intelligence Lecture
soulchild
July 23, 2014
Tweet
Share
More Decks by soulchild
See All by soulchild
Similarities between macOS and iOS development
soulchild
0
120
N Tier Architecture for MMORPG
soulchild
0
93
Other Decks in Science
See All in Science
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
200
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
130
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
1k
データマイニング - ノードの中心性
trycycle
PRO
0
310
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
850
[Paper Introduction] From Bytes to Ideas:Language Modeling with Autoregressive U-Nets
haruumiomoto
0
170
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.9k
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
140
機械学習 - SVM
trycycle
PRO
1
930
あなたに水耕栽培を愛していないとは言わせない
mutsumix
0
120
データマイニング - グラフデータと経路
trycycle
PRO
1
250
HDC tutorial
michielstock
0
200
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Music & Morning Musume
bryan
46
7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Docker and Python
trallard
46
3.7k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Optimizing for Happiness
mojombo
379
70k
RailsConf 2023
tenderlove
30
1.3k
How to Ace a Technical Interview
jacobian
280
24k
A better future with KSS
kneath
240
18k
Transcript
Artificial Intelligence Gradient Descent soulchild
Gradient Descent Let computer find the minimum point in a
given graph or equation
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point How does a computer know that this is a minimum point?
Gradient Descent Ans : By brute-forcing the derivative until a
value equal or near to 0 is found y = x2 dy dx = 2x Then guess x by starting from, eg: -6 to 6
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0 Minimum point found, stop
Gradient Descent A better way to brute force
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent How to set a good learning rate (α)
?
Gradient Descent When to stop searching ?
Gradient Descent When to stop searching ? Set a maximum
number of iteration
Gradient Descent When to stop searching ? Set a maximum
number of iteration dy dx < n When n can be 0.1, 0.01,.. etc
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding What about this?! smaller than previous point wor
Gradient Descent Weakness of Gradient Descent Gradient Descent may stuck
in a local minima thus can’t find the global minima
Gradient Descent Q&A