Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Gradient Descent Easy
Search
soulchild
July 23, 2014
Science
0
79
Gradient Descent Easy
Easy/brief version of Gradient Descent from Artificial Intelligence Lecture
soulchild
July 23, 2014
Tweet
Share
More Decks by soulchild
See All by soulchild
Similarities between macOS and iOS development
soulchild
0
110
N Tier Architecture for MMORPG
soulchild
0
89
Other Decks in Science
See All in Science
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
250
Transformers are Universal in Context Learners
gpeyre
0
590
ultraArmをモニター提供してもらった話
miura55
0
200
解説!データ基盤の進化を後押しする手順とタイミング
shomaekawa
1
350
プロダクト開発を通して学んだナレッジマネジメントの哲学
sonod
0
150
WeMeet Group - 採用資料
wemeet
0
3.4k
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
220
All-in-One Bioinformatics Platform Realized with Snowflake ~ From In Silico Drug Discovery, Disease Variant Analysis, to Single-Cell RNA-seq
ktatsuya
0
240
インフラだけではない MLOps の話 @事例でわかるMLOps 機械学習の成果をスケールさせる処方箋 発売記念
icoxfog417
2
600
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
110
240510 COGNAC LabChat
kazh
0
140
最適化超入門
tkm2261
14
3.3k
Featured
See All Featured
Bash Introduction
62gerente
608
210k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Teambox: Starting and Learning
jrom
133
8.8k
Side Projects
sachag
452
42k
4 Signs Your Business is Dying
shpigford
181
21k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
470
Why You Should Never Use an ORM
jnunemaker
PRO
54
9.1k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
What's new in Ruby 2.0
geeforr
343
31k
How STYLIGHT went responsive
nonsquared
95
5.2k
Transcript
Artificial Intelligence Gradient Descent soulchild
Gradient Descent Let computer find the minimum point in a
given graph or equation
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 Minimum point How does a computer know that this is a minimum point?
Gradient Descent Ans : By brute-forcing the derivative until a
value equal or near to 0 is found y = x2 dy dx = 2x Then guess x by starting from, eg: -6 to 6
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 dy dx = -12 dy dx = —8 dy dx = -4 dy dx = 0 Minimum point found, stop
Gradient Descent A better way to brute force
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent y 0 10 20 30 40 x -6
-4 -2 0 2 4 6 y = x2 In short, it works like this
Gradient Descent How to set a good learning rate (α)
?
Gradient Descent When to stop searching ?
Gradient Descent When to stop searching ? Set a maximum
number of iteration
Gradient Descent When to stop searching ? Set a maximum
number of iteration dy dx < n When n can be 0.1, 0.01,.. etc
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding
Gradient Descent Weakness of Gradient Descent 0 3 6 9
12 -8 -6 -4 -2 0 2 4 let say start from here dy dx = 0 then computer stop finding What about this?! smaller than previous point wor
Gradient Descent Weakness of Gradient Descent Gradient Descent may stuck
in a local minima thus can’t find the global minima
Gradient Descent Q&A