Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Finite Automaton equivalents to Regular Expression
Search
N@N
December 13, 2015
Technology
0
130
Finite Automaton equivalents to Regular Expression
数物セミナー冬の大談話会2015 in 岡山での発表資料
N@N
December 13, 2015
Tweet
Share
More Decks by N@N
See All by N@N
introduction to modern numerical analysis
spark6251
0
170
Programmer and English
spark6251
0
120
Let's go to the study session
spark6251
0
100
Quantum Computation
spark6251
0
270
Introduction to use Grunt
spark6251
0
88
Introduction to Regular Expression
spark6251
0
340
Introduction to SCSS+COMPASS
spark6251
0
280
Introduction to Psychology
spark6251
1
270
Introduction to HTML5
spark6251
0
290
Other Decks in Technology
See All in Technology
30分でわかる!!『OCI で学ぶクラウドネイティブ実践 X 理論ガイド』
oracle4engineer
PRO
1
110
ストレージエンジニアの仕事と、近年の計算機について / 第58回 情報科学若手の会
pfn
PRO
4
960
実践マルチモーダル検索!
shibuiwilliam
3
550
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
7
1.8k
AWS re:Invent 2025事前勉強会資料 / AWS re:Invent 2025 pre study meetup
kinunori
0
1.1k
Databricks Free Editionで始めるMLflow
taka_aki
0
770
書籍『実践 Apache Iceberg』の歩き方
ishikawa_satoru
0
450
JAWS UG AI/ML #32 Amazon BedrockモデルのライフサイクルとEOL対応/How Amazon Bedrock Model Lifecycle Works
quiver
1
750
re:Invent 2025の見どころと便利アイテムをご紹介 / Highlights and Useful Items for re:Invent 2025
yuj1osm
0
650
Kotlinで型安全にバイテンポラルデータを扱いたい! ReladomoラッパーをAIと実装してみた話
itohiro73
3
220
ピープルウエア x スタートアップ
operando
1
2.8k
Amazon Q Developer CLIをClaude Codeから使うためのベストプラクティスを考えてみた
dar_kuma_san
0
320
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
72
11k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.7k
Speed Design
sergeychernyshev
32
1.2k
Art, The Web, and Tiny UX
lynnandtonic
303
21k
Building a Modern Day E-commerce SEO Strategy
aleyda
44
8k
Practical Orchestrator
shlominoach
190
11k
A Modern Web Designer's Workflow
chriscoyier
697
190k
The Pragmatic Product Professional
lauravandoore
36
7k
Stop Working from a Prison Cell
hatefulcrawdad
272
21k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Transcript
None
• • •
• • • • • • •
• : → • ∈ , ⊂ , ∀ ,
∃ •
• •
• • •
• • • •
None
•
$ perl -i -pe 's/foo/bar/g' input foo oaaahhhhhhhh! -> bar
oaaahhhhhhhh! $ perl -i'*.bak' -pe 's/foo/bar/g' input
• HT 0x09 ¥t LF 0x0a ¥n CR 0x0d ¥r
LF ¥n CR ¥r CR+LF ¥r¥n
$ perl -i -pe 's/^¥t*//g' input
<A>B</C> -> B $ perl -i -pe 's/<(.*)>(.*)</(.*)>/$2/g' input <saflijlsa>BBBBBBBIAA</fjsaljfoa>
-> BBBBBBBIAA ¥1
• http://www.rexv.org/ • https://jex.im/regulex/
• • https://speakerdeck.com/spark6251/
• • • •
• 0 ∈ ℕ
None
•
None
None
1 1 2
• 1 1 1 1 1 2 2 2 1
2
• ≠ Σ • • Σ • • • Σ
Σ5 ∋ = = 5 • = 0 • Σ = , , , , , , , , ⋯
def = , Σ, , 0 , Σ : ×
Σ → 0 ∈ ⊂
1 = {1 , 2 } Σ = 0,1 :
× Σ → 1 ∈ 2 ⊂ 0 1 1 2 1 2 2 2 1 2
def =
1 = 0 1 (.*)0(.*) 1 2
1 2 1 2 2
Σ = < RESET >, 0,1, ⋯ , • •
< RESET >
• = , Σ, , 0 , • Σ ∋
= 1 2 ⋯ ∀ ∈ Σ def ∃ ∈ s. t. 0 = 0 , +1 = +1 ∈
def ∃: NFA s. t. recognize
• , • ∪ ≔ ∈ or ∈ • ∘
≔ ∈ and ∈ • ∗ ≔ 1 2 ⋯ ∈ ℕ, ∈ •
• Σ ≔ , , ⋯ , • ≔ good,
bad • ≔ start, end • ∪ = good, bad, start, end • ∘ = goodstart, goodend, badstart, badend • ∗ = , good, bad, goodgood, goodbad, badbad, ⋯
1 , 2 : Reg. Lang. ⇒ 1 ∪ 2
: Reg. Lang. 1 , 2 : Reg. Lang. ⇒ 1 ∘ 2 : Reg. Lang. : Reg. Lang. ⇒ ∗: Reg. Lang.
• 1 , 2 1 , 2 • 1 ∪
2 • 1 , 2 • 1 or 2 • • 1 2 •
• 1 = 1 , Σ, 1 , 1 ,
1 1 • 2 = 2 , Σ, 2 , 2 , 2 2 1. ≔ 1 , 2 1 ∈ 1 and 2 ∈ 2 2. ∀ 1 , 2 ∈ : ∀ ∈ Σ: 1 , 2 , = 1 1 , , 2 2 , 3. 0 ≔ 1 , 2 4. ≔ 1 , 2 1 ∈ 1 or 2 ∈ 2 = 1 × 2 ∪ 2 × 1 = , Σ, , 0 ,
1 1 2 1 2 1 2
• = , Σ, , 0 , = 1 ,
2 , 1 , 1 , 1 , 2 , 1 , 2 , 1 , 1 , 1 , 2 : 1 × 2 × Σ → 1 × 2 0 = 1 , 2 = 1 , 2 , 1 , 1 , 1 , 2 , 1 , 1 1 1 2 1 2 1 2
• • •
• • • • •
• 2 1 3 4
2 1 1 1 2 1 3 3 3 4
2 1 3 4
def = , Σ, , 0 , Σ : ×
Σ → Σ ≔ Σ ∪ 0 ∈ ⊂
= {1 , 2 , 3 , 4 } Σ
= 0,1 : × Σ → 1 ∈ 2 ⊂ 0 1 ε 1 1 1 , 2 ∅ 2 3 ∅ 3 3 4 ∅ ∅ 4 ∅ ∅ ∅ 2 1 3 4
• = , Σ, , 0 , • Σ ∋
= 1 2 ⋯ ∀ ∈ Σ def ∃ ∈ s. t. 0 = 0 ∀ ∈ ℕ, ≤ − 1: +1 ∈ , +1 ∈
iff ∀1 : NFA: ∃2 : DFA s. t. 1
≡ 2 ∀1 , 2 : FA 1 ≡ 2 def 1 2
• = , Σ, , 0 , • ′ =
′, Σ, ′, 0 ′ , ′ • ′ • • • • card = ⇒ card = 2
• = , Σ, , 0 , • ′ =
′, Σ, ′, 0 ′ , ′ 1. ′ ≔ 2. ∀ ∈ ′: ∀ ∈ Σ: ′ , = ∈ ∈ , , ∈ = , ∈ 3. 0 ′ ≔ 0 4. ′ ≔ ∈ ′ ⊂
• ⊂ ′ ∈ ′ ∗ → • ⊂ ≔
∗ → ′ , = , = ∈ ∈ , , ∈ 0 ′ = 0 ///
∃: DFA s. t. recognize
• • • ′ = ′ ′ 2 1 3
• = , Σ, , 0 , • ′ =
′, Σ, ′, 0 ′ , ′ • 0 ′ = 0 = 1 , 2 • ′ = 3 , 1 , 3 , 2 , 3 , 1 , 2 , 3 2 1 3
0 1 ε 1 1 1 , 2 ∅ 2
3 ∅ 3 3 ∅ ∅ ∅ ′ 0 1 1 1 , 2 , 3 1 , 2 2 3 ∅ 3 ∅ ∅ 2 1 3
′ 0 1 1 1 , 2 , 3 1
, 2 2 3 ∅ 3 ∅ ∅ ′ 0 1 1 1 , 2 , 3 1 , 2 2 3 ∅ 3 ∅ ∅ 1 , 2 1 , 2 , 3 1 , 2 1 , 2 , 3 1 , 2 , 3 1 , 2 2 1 3
1 , 2 , 3 1 , 2 3 2
1
1 , 2 , 3 1 , 2
′ = 1 , 2 , 1 , 2 ,
3 0 ′ = 1 , 2 ′ = 1 , 2 , 3 1 , 2 , 3 1 , 2 ′ 0 1 1 , 2 1 , 2 , 3 1 , 2 1 , 2 , 3 1 , 2 , 3 1 , 2
1 , 2 : Reg. Lang. ⇒ 1 ∪ 2
: Reg. Lang. 1 , 2 : Reg. Lang. ⇒ 1 ∘ 2 : Reg. Lang. : Reg. Lang. ⇒ ∗: Reg. Lang.
1. ≔ 0 ∪ 1 ∪ 2 2. ∀ ∈
: ∀ ∈ Σ : , = 1 , ∈ 1 2 , ∈ 2 1 , 2 = 0 and = ∅ = 0 and ≠ 3. ≔ 1 ∪ 2 • = 0 and = • 1 ∘ 2 , ∗
• • •
• Σ = 0,1 • 0 ∪ 1 ∗ •
0 ∪ 1 ∗0 0 ∪ 1 ∗ ∘ 0 • 0Σ∗ ∪ 1Σ∗ ΣΣ∗
• ∗, 1 ∘ 2 , 1 ∪ 2 •
1 ∗ ∪ 2 ∘ 3 ∪ 4 ∗ 1 ∗ ∪ 2 ∘ 3 ∪ 4 ∗
def 1. ∈ Σ 2. 3. ∅ 4. 1 ∪
2 5. 1 ∘ 2 6. 1 ∗ 1 , 2
• + ≔ ∗ • + = ∪ • ≔
⋯ ∈ ℕ • 1∗∅ ≔ ∅ • ∅∗ ≔ • ∗
+∪−∪ + ∪ +. ∗ ∪ ∗. + +72, −5.2,
2. , −.6
•
• NFA DFA def ∃: NFA s. t. recognize
⇐ ⇒ ⇒
⇐ 1. ∈ Σ = = = 1 , 2
, Σ, , 1 , 2 2. = = = 1 , Σ, , 1 , 1 a 1 2 1
⇐ 3. = ∅ = ∅ = 1 , Σ,
, 1 , ∅ 4. = 1 ∪ 2 5. = 1 ∘ 2 6. = 1 ∗ 1
⇒
• • • • •
• = , Σ, , 0 , • ′ =
′, Σ, ′, , • → ′ 1. 0 → 2. ∈ : → ∅
+ 2 + 1 2
1 2 2 3 3 1 1 3 1 2
∗3
def = , Σ, , , Σ : − ×
− → ℛ ℛ ∈ ∈ 1 , 2 = 1 2
• = , Σ, , , • Σ ∋ =
1 2 ⋯ ∀ ∈ Σ∗ def ∃ ∈ s. t. 0 = = ∀ ∈ ℕ: = −1 , ⇒ ∈
⇒ • CONVERT
⇒ CONVERT 5. 6. = 2 →
⇒ CONVERT 7. > 2 , ≠ rip ∈ ′
= ′, Σ, ′, , ′ = − rip ∀ ∈ ′ − , ∀ ∈ ′ − : ′ , = 1 2 ∗ 3 ∪ 4 1 = , rip , 2 = rip , rip , 3 = rip , , 4 = , 8. CONVERT ′ = 2
⇒ CONVERT CONVERT CONVERT CONVERT G′ CONVERT ′ CONVERT ′′
CONVERT −2
⇒ ∀: GNFA: CONVERT ≡ ′ = CONVERT ∀1 ,
2 : FA 1 ≡ 2 def 1 2
⇒ ⇒ = 2 • •
⇒ ⇒ − 1 ′ , 1 , 2 ,
⋯ , ≠ rip ∀ ′
⇒ ⇒ rip → rip → ′
⇒ ⇐ ′ rip ′
⇒ ′ − 1 ′ ≡ ≡
2 1 3
1 ∪ 0 ∪ 1 2 1 3 0
1 ∪ 0 ∪ 1 2 1 0
1 ∪ 0 0 ∪ 1 1
0 ∪ 1 ∗ 1 ∪ 0 [01]*1?0
• 0∗1∗ • 01 • • •
•
• •