関数形や分布には仮定をおかないアプローチ 1. 因果グラフに仮定をおく – 非巡回有向グラフ – 未観測の!"#$なし(すべて観測されている) 2. 仮定を満たす構造の中で、データと(最も)つじつまの合うグラフを選ぶ 20 x y x y x y 「データでxとyが独立」なら、一番右の(c)を選ぶ (a)と(b)の区別はつかない(一意に決まらない): 同値類 3つの候補 (a) (b) (c)
拡張など • 潜在(未観測)共通原因を含めた同値類 (Spirtes et al., 1995) • 時間情報の利用 (Malinsky & Spirtes, 2018) • 巡回グラフを含めた同値類 (Richardson, 1996) 21 x y f w z x y w z x y f1 w z f2 F. Eberhardt CRM Workshop 2016より (Malinsky and Spirtes, 2018)
具体的には、非ガウス性と独立性をどう使うか? 23 x1 x2 e1 e2 正しいモデル 結果x2を原因x1に回帰 原因x1を結果x2に回帰 2 1 21 2 1 1 1 2 2 ) 1 ( 2 ) var( ) , cov( e x b x x x x x x r = - = - = は独立 と ) 1 ( 2 1 1 ) ( r e x = 残差 ( ) ) var( var ) var( ) , cov( 1 ) var( ) , cov( 2 1 21 1 2 2 1 21 2 2 2 1 1 ) 2 ( 1 x x b e x x x b x x x x x r - þ ý ü î í ì - = - = は と ) 2 ( 1 2 1 21 2 ) ( r e e b x + = 2 e 従属 ガウスだと 無相関=独立 𝑥! = 𝑒! 𝑥" = 𝑏"! 𝑥! + 𝑒" 𝑏!" ≠ 0