Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSII2024 [OS3] 生成AIと完全自動運転
Search
画像センシングシンポジウム
PRO
June 12, 2024
Technology
0
910
SSII2024 [OS3] 生成AIと完全自動運転
画像センシングシンポジウム
PRO
June 12, 2024
Tweet
Share
More Decks by 画像センシングシンポジウム
See All by 画像センシングシンポジウム
SSII2025 [OS3] どの論文でもダメなんだけど! 〜実応用とその課題〜
ssii
PRO
2
1.5k
SSII2025 [OS3-01] End-to-End自動運転の実応用の現場から
ssii
PRO
6
3k
SSII2025 [OS3-02] 広告における画像生成技術の実応用の現状
ssii
PRO
6
1.4k
SSII2025 [OS3-03] 有機ミニトマト農場におけるロボット開発と基礎研究
ssii
PRO
0
1.1k
SSII2025 [OS2-01] 自動運転の性能と共に進化するセンシングデバイス
ssii
PRO
2
2k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
3
1.3k
SSII2025 [OS2] 新たなセンシングの潮流
ssii
PRO
1
670
SSII2025 [OS2-02] イベントカメラの研究紹介と可視光通信への応用
ssii
PRO
1
1.3k
SSII2025 [OS2-03] マルチ/ハイパースペクトル領域における高度な画像撮影および処理技術
ssii
PRO
2
1.3k
Other Decks in Technology
See All in Technology
1人1サービス開発しているチームでのClaudeCodeの使い方
noayaoshiro
2
420
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
420
文字列の並び順 / Unicode Collation
tmtms
3
610
AI-DLCを現場にインストールしてみた:プロトタイプ開発で分かったこと・やめたこと
recruitengineers
PRO
2
160
Oracle Cloud Infrastructure IaaS 新機能アップデート 2025/09 - 2025/11
oracle4engineer
PRO
0
160
Haskell を武器にして挑む競技プログラミング ─ 操作的思考から意味モデル思考へ
naoya
7
1.6k
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
110
ChatGPTで論⽂は読めるのか
spatial_ai_network
11
29k
ハッカソンから社内プロダクトへ AIエージェント「ko☆shi」開発で学んだ4つの重要要素
sonoda_mj
4
220
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
チーリンについて
hirotomotaguchi
6
2.1k
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
110
Featured
See All Featured
Avoiding the “Bad Training, Faster” Trap in the Age of AI
tmiket
0
32
Done Done
chrislema
186
16k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
60
37k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
Building Experiences: Design Systems, User Experience, and Full Site Editing
marktimemedia
0
310
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The Invisible Side of Design
smashingmag
302
51k
More Than Pixels: Becoming A User Experience Designer
marktimemedia
2
240
HDC tutorial
michielstock
0
250
Transcript
生成AIと完全自動運転 2024.6.14 青木 俊介 (チューリング株式会社 取締役CTO/ 国立情報学研究所 助教)
None
共同創業者・CTO 青木俊介 2014年 東京大学 大学院 修士(情報理工学) 2015年-2020年 米・カーネギーメロン大学の情報工学科でPh.D. ゼネラルモーターズと自動運転システム開発 自動運転の研究・開発に従事
2021年4月 国立情報学研究所 助教 2021年8月 チューリング株式会社を共同創業 CTO
How can we conquer the market held by Japanese car
makers by autonomous driving? (日本の自動車メーカーが持っている市場を どう自動運転ソフトウェアで奪えるだろうか?)
日本は製造業・モノづくりが伝統的に強い しかし情報・ITによる「変化」で負けてきた
日本は製造業・モノづくりが伝統的に強い しかし情報・ITによる「変化」で負けてきた
世界はテスラを評価している
日本の年間自動車出荷額: 60兆円 自動車産業の就業人口: 550万人 全就業人口に対する比率: 8.5% 日本の基幹産業の危機
日本の年間自動車出荷額: 60兆円 自動車産業の就業人口: 550万人 全就業人口に対する比率: 8.5% 日本の基幹産業の危機
None
「情報」のプラットフォーム
2023年の対米ITサービス: 5.6兆円の赤字 2030年の対米ITサービス: 10兆円の赤字 「デジタル小作人」 「ITの植民地」
生成AIと完全自動運転 チューリング 共同創業者CTO 青木俊介
None
None
None
None
None
None
None
None
運転シーンの理解:既存 vs LLM自動運転
運転シーンの理解:既存 vs LLM自動運転
運転シーンの理解:既存 vs LLM自動運転 「AIによる物体の個別認識→ルールベースのコンテキスト理解・意思決定」から 「AIによるコンテキスト理解・意思決定」に移行
None
None
None
Vision-Language Modelの開発
None
None
None
None
None
None
None
None
None
None
None
まとめ • 完全自動運転には生成AI・LLMが必要 • コンテキストを理解する「脳」が必要 • 車に組み込むには速度が大事 • LLMの推論はスループット・レイテンシに課題 •
HW・SW両面での高速化 • チューリング、採用も積極的です! • プレシリーズA調達! • 勝ち馬をつくろう!
生成AIと完全自動運転 チューリング 共同創業者CTO 青木俊介