Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSII2024 [OS3] 生成AIと完全自動運転
Search
画像センシングシンポジウム
PRO
June 12, 2024
Technology
0
860
SSII2024 [OS3] 生成AIと完全自動運転
画像センシングシンポジウム
PRO
June 12, 2024
Tweet
Share
More Decks by 画像センシングシンポジウム
See All by 画像センシングシンポジウム
SSII2025 [OS3] どの論文でもダメなんだけど! 〜実応用とその課題〜
ssii
PRO
2
1.2k
SSII2025 [OS3-01] End-to-End自動運転の実応用の現場から
ssii
PRO
6
2.6k
SSII2025 [OS3-02] 広告における画像生成技術の実応用の現状
ssii
PRO
5
1.3k
SSII2025 [OS3-03] 有機ミニトマト農場におけるロボット開発と基礎研究
ssii
PRO
0
980
SSII2025 [OS2-01] 自動運転の性能と共に進化するセンシングデバイス
ssii
PRO
2
1.8k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
2
1.3k
SSII2025 [OS2] 新たなセンシングの潮流
ssii
PRO
1
570
SSII2025 [OS2-02] イベントカメラの研究紹介と可視光通信への応用
ssii
PRO
1
980
SSII2025 [OS2-03] マルチ/ハイパースペクトル領域における高度な画像撮影および処理技術
ssii
PRO
2
1.1k
Other Decks in Technology
See All in Technology
Amazon Q と『音楽』-ゲーム音楽もAmazonQで作成してみた感想-
senseofunity129
0
140
アカデミーキャンプ 2025 SuuuuuuMMeR「燃えろ!!ロボコン」 / Academy Camp 2025 SuuuuuuMMeR "Burn the Spirit, Robocon!!" DAY 1
ks91
PRO
0
150
LTに影響を受けてテンプレリポジトリを作った話
hol1kgmg
0
360
家族の思い出を形にする 〜 1秒動画の生成を支えるインフラアーキテクチャ
ojima_h
3
1.1k
大規模イベントに向けた ABEMA アーキテクチャの遍歴 ~ Platform Strategy 詳細解説 ~
nagapad
0
230
GMOペパボのデータ基盤とデータ活用の現在地 / Current State of GMO Pepabo's Data Infrastructure and Data Utilization
zaimy
3
220
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
170
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
220
[OCI Technical Deep Dive] OracleのAI戦略(2025年8月5日開催)
oracle4engineer
PRO
1
170
Intro to Software Startups: Spring 2025
arnabdotorg
0
260
事業特性から逆算したインフラ設計
upsider_tech
0
110
生成AI時代におけるAI・機械学習技術を用いたプロダクト開発の深化と進化 #BetAIDay
layerx
PRO
1
1.2k
Featured
See All Featured
How to Ace a Technical Interview
jacobian
278
23k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4k
GraphQLとの向き合い方2022年版
quramy
49
14k
How STYLIGHT went responsive
nonsquared
100
5.7k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
283
13k
YesSQL, Process and Tooling at Scale
rocio
173
14k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
BBQ
matthewcrist
89
9.8k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
36
2.5k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
生成AIと完全自動運転 2024.6.14 青木 俊介 (チューリング株式会社 取締役CTO/ 国立情報学研究所 助教)
None
共同創業者・CTO 青木俊介 2014年 東京大学 大学院 修士(情報理工学) 2015年-2020年 米・カーネギーメロン大学の情報工学科でPh.D. ゼネラルモーターズと自動運転システム開発 自動運転の研究・開発に従事
2021年4月 国立情報学研究所 助教 2021年8月 チューリング株式会社を共同創業 CTO
How can we conquer the market held by Japanese car
makers by autonomous driving? (日本の自動車メーカーが持っている市場を どう自動運転ソフトウェアで奪えるだろうか?)
日本は製造業・モノづくりが伝統的に強い しかし情報・ITによる「変化」で負けてきた
日本は製造業・モノづくりが伝統的に強い しかし情報・ITによる「変化」で負けてきた
世界はテスラを評価している
日本の年間自動車出荷額: 60兆円 自動車産業の就業人口: 550万人 全就業人口に対する比率: 8.5% 日本の基幹産業の危機
日本の年間自動車出荷額: 60兆円 自動車産業の就業人口: 550万人 全就業人口に対する比率: 8.5% 日本の基幹産業の危機
None
「情報」のプラットフォーム
2023年の対米ITサービス: 5.6兆円の赤字 2030年の対米ITサービス: 10兆円の赤字 「デジタル小作人」 「ITの植民地」
生成AIと完全自動運転 チューリング 共同創業者CTO 青木俊介
None
None
None
None
None
None
None
None
運転シーンの理解:既存 vs LLM自動運転
運転シーンの理解:既存 vs LLM自動運転
運転シーンの理解:既存 vs LLM自動運転 「AIによる物体の個別認識→ルールベースのコンテキスト理解・意思決定」から 「AIによるコンテキスト理解・意思決定」に移行
None
None
None
Vision-Language Modelの開発
None
None
None
None
None
None
None
None
None
None
None
まとめ • 完全自動運転には生成AI・LLMが必要 • コンテキストを理解する「脳」が必要 • 車に組み込むには速度が大事 • LLMの推論はスループット・レイテンシに課題 •
HW・SW両面での高速化 • チューリング、採用も積極的です! • プレシリーズA調達! • 勝ち馬をつくろう!
生成AIと完全自動運転 チューリング 共同創業者CTO 青木俊介