Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
SSII2024 [OS3] 生成AIと完全自動運転
Search
画像センシングシンポジウム
PRO
June 12, 2024
Technology
0
920
SSII2024 [OS3] 生成AIと完全自動運転
画像センシングシンポジウム
PRO
June 12, 2024
Tweet
Share
More Decks by 画像センシングシンポジウム
See All by 画像センシングシンポジウム
SSII2025 [OS3] どの論文でもダメなんだけど! 〜実応用とその課題〜
ssii
PRO
2
1.6k
SSII2025 [OS3-01] End-to-End自動運転の実応用の現場から
ssii
PRO
6
3.2k
SSII2025 [OS3-02] 広告における画像生成技術の実応用の現状
ssii
PRO
6
1.4k
SSII2025 [OS3-03] 有機ミニトマト農場におけるロボット開発と基礎研究
ssii
PRO
0
1.1k
SSII2025 [OS2-01] 自動運転の性能と共に進化するセンシングデバイス
ssii
PRO
2
2k
SSII2025 [TS3] 医工連携における画像情報学研究
ssii
PRO
3
1.4k
SSII2025 [OS2] 新たなセンシングの潮流
ssii
PRO
1
680
SSII2025 [OS2-02] イベントカメラの研究紹介と可視光通信への応用
ssii
PRO
1
1.3k
SSII2025 [OS2-03] マルチ/ハイパースペクトル領域における高度な画像撮影および処理技術
ssii
PRO
2
1.4k
Other Decks in Technology
See All in Technology
20260204_Midosuji_Tech
takuyay0ne
1
150
Claude_CodeでSEOを最適化する_AI_Ops_Community_Vol.2__マーケティングx_AIはここまで進化した.pdf
riku_423
2
560
プロポーザルに込める段取り八分
shoheimitani
1
230
15 years with Rails and DDD (AI Edition)
andrzejkrzywda
0
190
IaaS/SaaS管理における SREの実践 - SRE Kaigi 2026
bbqallstars
4
2.2k
What happened to RubyGems and what can we learn?
mikemcquaid
0
290
広告の効果検証を題材にした因果推論の精度検証について
zozotech
PRO
0
170
Kiro IDEのドキュメントを全部読んだので地味だけどちょっと嬉しい機能を紹介する
khmoryz
0
180
Agile Leadership Summit Keynote 2026
m_seki
1
610
10Xにおける品質保証活動の全体像と改善 #no_more_wait_for_test
nihonbuson
PRO
2
240
Ruby版 JSXのRuxが気になる
sansantech
PRO
0
150
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
210
Featured
See All Featured
Statistics for Hackers
jakevdp
799
230k
Marketing to machines
jonoalderson
1
4.6k
The agentic SEO stack - context over prompts
schlessera
0
640
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Design in an AI World
tapps
0
140
[SF Ruby Conf 2025] Rails X
palkan
1
750
GitHub's CSS Performance
jonrohan
1032
470k
WENDY [Excerpt]
tessaabrams
9
36k
Documentation Writing (for coders)
carmenintech
77
5.3k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
37k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
Skip the Path - Find Your Career Trail
mkilby
0
55
Transcript
生成AIと完全自動運転 2024.6.14 青木 俊介 (チューリング株式会社 取締役CTO/ 国立情報学研究所 助教)
None
共同創業者・CTO 青木俊介 2014年 東京大学 大学院 修士(情報理工学) 2015年-2020年 米・カーネギーメロン大学の情報工学科でPh.D. ゼネラルモーターズと自動運転システム開発 自動運転の研究・開発に従事
2021年4月 国立情報学研究所 助教 2021年8月 チューリング株式会社を共同創業 CTO
How can we conquer the market held by Japanese car
makers by autonomous driving? (日本の自動車メーカーが持っている市場を どう自動運転ソフトウェアで奪えるだろうか?)
日本は製造業・モノづくりが伝統的に強い しかし情報・ITによる「変化」で負けてきた
日本は製造業・モノづくりが伝統的に強い しかし情報・ITによる「変化」で負けてきた
世界はテスラを評価している
日本の年間自動車出荷額: 60兆円 自動車産業の就業人口: 550万人 全就業人口に対する比率: 8.5% 日本の基幹産業の危機
日本の年間自動車出荷額: 60兆円 自動車産業の就業人口: 550万人 全就業人口に対する比率: 8.5% 日本の基幹産業の危機
None
「情報」のプラットフォーム
2023年の対米ITサービス: 5.6兆円の赤字 2030年の対米ITサービス: 10兆円の赤字 「デジタル小作人」 「ITの植民地」
生成AIと完全自動運転 チューリング 共同創業者CTO 青木俊介
None
None
None
None
None
None
None
None
運転シーンの理解:既存 vs LLM自動運転
運転シーンの理解:既存 vs LLM自動運転
運転シーンの理解:既存 vs LLM自動運転 「AIによる物体の個別認識→ルールベースのコンテキスト理解・意思決定」から 「AIによるコンテキスト理解・意思決定」に移行
None
None
None
Vision-Language Modelの開発
None
None
None
None
None
None
None
None
None
None
None
まとめ • 完全自動運転には生成AI・LLMが必要 • コンテキストを理解する「脳」が必要 • 車に組み込むには速度が大事 • LLMの推論はスループット・レイテンシに課題 •
HW・SW両面での高速化 • チューリング、採用も積極的です! • プレシリーズA調達! • 勝ち馬をつくろう!
生成AIと完全自動運転 チューリング 共同創業者CTO 青木俊介