Upgrade to Pro — share decks privately, control downloads, hide ads and more …

RCOにおける機械学習

 RCOにおける機械学習

RCO Study Night “RCOにおける機械学習と次世代量子情報処理技術「量子アニーリング」”
- https://atnd.org/events/73404

において使用したトーク資料

Shinichi Takayanagi

January 18, 2016
Tweet

More Decks by Shinichi Takayanagi

Other Decks in Technology

Transcript

  1. 自己紹介 • 高柳慎一 • 専門:物理学, 統計科学 • 経歴: – 2006:

    北海道大学大学院理学研究科物理学先行修士卒 – 2006-2008: 某材料系財団法人 • 半導体試料画像・測定装置スペクトルの解析ソフト開発 – 2008-2015: 某金融技術開発会社 • (俗にいう)クオンツ業務 – 2013:総合研究大学院大学複合科学研究科統計科学専攻博士課程 – 2015:株式会社リクルートコミュニケーションズ • サービス開発・データ分析/機械学習 3
  2. 人生の節目の大きな意思決定をサポートする領域から 日常におけるあらゆる選択をサポートする領域まで幅広く事業を展開 進学 就職 結婚 転職 住宅購入 出産/育児 旅行 お稽古

    美容 通販 ファッション グルメ 日常におけるあらゆる選択をサポートする領域 車購入 【会社説明】リクルートの事業領域
  3. 北米 欧州 日本、アジア全域、欧州、北米で事業を展開 世界16の国と地域、約900拠点 オセアニア アジア (人材派遣) (オンライン飲食) (オンライン美容) (人材紹介)

    (旅行事業/OTA ) (オンラインHR/一部出資) RGF HR Agent各社 (人材紹介) (人材派遣) (人材紹介/経営コンサル) (旅行事業/OTA ) (旅行事業/OTA ) (オンライン美容) (人材派遣) (人材派遣) (オンラインHR ) (住宅事業) (人材派遣) (人材派遣) (人材派遣) (IT/一部出資) 【会社説明】リクルートグループ:昨今のテーマ② (旅行事業/OTA ) (飲食・美容事業)
  4. 【会社説明】リクルートグループ内のRCOの立ち位置 10 ㈱リクルート ホールディングス ㈱リクルートキャリア ㈱リクルートジョブズ ㈱リクルートスタッフィング ㈱スタッフサービス・ホールディングス ㈱リクルートライフスタイル ㈱リクルートマーケティングパートナーズ

    ㈱リクルート住まいカンパニー ㈱リクルートアドミニストレーション ㈱リクルートテクノロジーズ ㈱リクルートコミュニケーションズ 主な事業会社 機能会社 制作・設計・宣伝・流通・CS WEBサービス開発機能 社員募集領域 AP人材募集領域 派遣人材募集領域 本社機能 R&D(事業開発) グローバル 住宅領域 派遣人材募集領域 日常消費領域 結婚・進学・自動車等領域 アドミニストレーション機能 IT/基幹システム開発 2012年10月1日 リクルートグループの主要10社
  5. など HR領域 など 住宅領域 など ブライダル領域 など 進学領域 旅行領域 など

    など クルマ系領域 その他の領域 生活情報系マーケット など 【リクルートの事業領域】RCOの携わる領域 RCOは、横断機能があるため、リクルートの全事業領域に関わることが出来る など グローバル など
  6. 以下のほぼすべてを担当 1. フロントエンジニア系おしごと – 各事業サイトに広告を出すフロント開発 2. データインフラ系おしごと – 各種ログデータ等を移動・集計する 3.

    バックグラウンドエンジニア系おしごと – ログから最適な広告・ユーザーを見つける 4. アドホック分析系おしごと – 機械学習を使ったソリューション提供 17
  7. データインフラ系おしごと • いわゆる、ETL(Extract/Transfrom/Load) – ログデータを整形して各種DBに入れ、 集計・加工・学習しやすいようにする • DWH(データウェアハウス)、データマート • DMP(データマネジメントプラットフォーム)

    • 各種BIツールへの接続(Tableau, DOMO等) • 必要とされるスキル: – DBの知識、インフラの知識 • AWS:あまぞんうぇぶさーびす • GCP:ぐーぐるくらうどぷらっとふぉーむ – SQL, 各種スクリプト(sh, python) – 地道に真面目にバッチが書ける忍耐力 19
  8. データインフラ系おしごとの例(AWS) 20 アプリ fluentd ElastiCache RDS Kinesis S3 Dynamo コンソール

    Redshift (ログ保存) (DWH・DMP) (メッセージ) (低レイテンシKVS) (管理) オレンジの矢印が データインフラ系 (実際の構成とは意図的に変更しております) (一時保存)
  9. データインフラ系おしごとの例(GCP) 21 アプリ fluentd Datastore Bigtable pub/sub Storage Dataproc コンソール

    bigQuery (ログ保存) (DWH・DMP) (メッセージ) (管理) オレンジの矢印が データインフラ系 (実際の構成とは意図的に変更しております) (一時集計) (低レイテンシKVS)
  10. なにしてるの? • バッチ学習:daily, hourlyの更新 – DMPの作成・更新 – クラスタリング – リコメンド

    – 最適化スコアの更新 • オンライン学習:リアルタイム更新 – リターゲッティング – 在庫予測・管理 23
  11. 中間まとめ:RCOのデータ分析者の道具 • 機械学習のパッケージ – R の各種パッケージ – python の scikit-learn,

    statsmodels – spark の MLlib(ml) • 画像処理・自然言語処理に特有の前処理 – openCV, scikit-image – mecab, word2vec • Deep Learning – Caffe, Theano, Chainer, TensorFlow 26
  12. 日々研鑽 • グループで自発的にやっていること – 機械学習大会 • KaggleやKDD Cupのように、社内で機械学習問題 を出して予測スコアを競い合う –

    論文輪読会 • 機械学習系の論文を持ち寄って議論する • 部としてやっていること – ライトニング・トーク大会 • 最新技術や興味のあることをプレゼンする大会 – コードバトル • ゲームのAIをみんなで持ち寄って勝敗をつける 27
  13. 最適化計算手法として量子アニーリングを考えたい • 組み合わせ最適化問題を解く手法として、 量子アニーリングを考える • 一方、ノーフリーランチの定理もある – 万能な最適化計算は存在しない – 領域限定の特化した最適化手法が必要

    • 疑問と課題(研究の方向性) – 量子アニーリングが向いている領域は? – 機械学習においてどう活用するのか? • 機械学習における組合せ最適化とは何か? 39