Upgrade to Pro — share decks privately, control downloads, hide ads and more …

WSDM 2016勉強会資料

WSDM 2016勉強会資料

Shinichi Takayanagi

March 17, 2016
Tweet

More Decks by Shinichi Takayanagi

Other Decks in Research

Transcript

  1. WSDM 2016勉強会 「Wiggins: Detecting Valuable Information in Dynamic Networks Using

    Limited Resources」 Ahmad Mahmoody, Matteo Riondato, Eli Upfal 株式会社リクルートコミュニケーションズ ICTソリューション局アドテクノロジーサービス開発部 高柳慎一
  2. モチベーション • 動的ネットワーク上での情報検知は有用 – 新しいWebページの検出 – 電気回路上での欠陥の伝搬 – 水の汚染の検出 •

    情報がネットワーク上を伝搬していく • 情報を新規性のあるうちに見つけたい • 一方、全ノードを常に監視するのは難しい – 各時点において一部のノードを調査できる状況を考える • どうノードを調査すべきかの最適なスケジューリン グを考えたい 2
  3. やったこと • 各種定義 – ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 –

    異なるスケジュール間のコストを定義 • これらを最適調査計画問題(Optimal Probing Schedule Problem)として定義づける • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 – MapReduce適用な形で提案 – WIGGINSってのはシャーロックホームズに出てくる諜報 機関?のリーダの名前らしい 3
  4. 2:問題の定式化 • グラフ構造: • ノード数: • ノードの部分集合族: • ある関数(確率): :

    → • グラフ上での情報生成・伝搬過程: – 時点tにおいて生成される情報(集合族): – あるノード部分集合 が に含まれる確率 • Sは論文中ではσ加法族と区別するために導入 – 単なるVの部分集合と考える、かつ、その生起確率を定義 • (t, S): “時点tに生成された情報が 手元にある る”を表現(アイテムと呼称) 4
  5. 3: 関連研究 • 水汚染の検出[1, 13, 20, 24, 29] • 伝染病の検出[7]

    • センサーのバッテリー消費最適化[11, 19, 21, 22] • SNS上での急伸トピックの検出[4, 25] • クローリング [8, 32] • ニュースフィードの更新[3, 15, 28, 30] 7
  6. 5:数値実験 • Independent-Cascade (IC) model [17]を使用 • 生成(creation)フェイズ – ノード上に噂”rumor”を生成し、そのノードの出次数

    (出 て行く辺数、outdegree, deg+)に応じて確率にbiasを付 けて生成を行わせる • 伝搬(diffusion)フェイズ – 確率1/伝搬先の入次数(入ってくる辺数indegree, deg-) で伝搬 11
  7. まとめ • ネットワーク上での情報の生成と伝搬過程の定式化 • (明示的に書いてないけど)測度論ベース – スケジュールに沿ったノードの調査法の定義 – 異なるスケジュール間のコストを定義 •

    これらを最適調査計画問題(Optimal Probing Schedule Problem)として定式化 • 制約付の凸計画問題として定式化し、それを解くた めにWIGGINSというアルゴリズム提案 • 数値検証実施 15