Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ピクシブにおける機械学習基盤
Search
sugakoji
June 13, 2023
Technology
0
700
ピクシブにおける機械学習基盤
第31回MLOps 勉強会で発表を行った「ピクシブ株式会社における機械学習基盤」の資料になります。
sugakoji
June 13, 2023
Tweet
Share
More Decks by sugakoji
See All by sugakoji
ピクシブの機械学習基盤 (PIXIV MEETUP 2023版)
sugakoji
0
1.4k
Other Decks in Technology
See All in Technology
要件定義・デザインフェーズでもAIを活用して、コミュニケーションの密度を高める
kazukihayase
0
110
Generative AI Japan 第一回生成AI実践研究会「AI駆動開発の現在地──ブレイクスルーの鍵を握るのはデータ領域」
shisyu_gaku
0
260
「Linux」という言葉が指すもの
sat
PRO
4
130
エラーとアクセシビリティ
schktjm
1
1.3k
新規プロダクトでプロトタイプから正式リリースまでNext.jsで開発したリアル
kawanoriku0
1
110
250905 大吉祥寺.pm 2025 前夜祭 「プログラミングに出会って20年、『今』が1番楽しい」
msykd
PRO
1
930
Firestore → Spanner 移行 を成功させた段階的移行プロセス
athug
1
480
KotlinConf 2025_イベントレポート
sony
1
140
研究開発と製品開発、両利きのロボティクス
youtalk
1
530
2025年夏 コーディングエージェントを統べる者
nwiizo
0
170
Django's GeneratedField by example - DjangoCon US 2025
pauloxnet
0
150
5年目から始める Vue3 サイト改善 #frontendo
tacck
PRO
3
220
Featured
See All Featured
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
51
5.6k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
Balancing Empowerment & Direction
lara
3
620
Raft: Consensus for Rubyists
vanstee
140
7.1k
GitHub's CSS Performance
jonrohan
1032
460k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
252
21k
The Power of CSS Pseudo Elements
geoffreycrofte
77
6k
The Language of Interfaces
destraynor
161
25k
Building Applications with DynamoDB
mza
96
6.6k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
Transcript
ピクシブにおける 機械学習基盤 sugasuga 1
自己紹介 2
sugasuga 3 所属:ピクシブ株式会社 仕事:機械学習チームでエンジニア サブで採用・広報 趣味:最近はトレーニング
ピクシブとは? 4 • 約16サービス イラスト・マンガ・小説の SNS クリエイター支援 創作系メディア マンガ家支援 マンガサービス
EC 3Dモデル作成 イラスト勉強 ネット百科事典 グッズ作成 3Dモデル 運用広告 マンガアプリ ドローツール 画像変換 小説サービス
機械学習チームの特徴 5 • 幅広いタスクをチームで遂行
今日話す内容 6
主に3つ話します 7
伝えたいメッセージ 8
機械学習基盤の紹介 9
GCPバッチ基盤 10 • GPU・CPUリソースを必要分だけ確保して学習を行う
GCPオンライン推論基盤 11 • オンプレ環境と繋いで推論結果を返す
機械学習基盤の作成に 必要だった技術 12
インフラ管理 13 • terraformを使って各種GCPリソースの作成ができる
インフラ管理 14 • 実際のterraformファイル(一部)
インフラ管理 15 • 作成するリソースたくさんある
GKE 16 • 概念理解が必要
GKE 17 • 実際のマニフェスト (kubernetes設定ファイル)
GKE 18 • 環境管理をDRYに行えるkustomize
認証周り(推論基盤の場合) 19 • IAP(リバースプロキシ) 使って特定のアクセスのみ許可
CI整備 20 • コーディングスタイル統一・テスト・型チェック ◦ python ▪ flake8/black/isort/pytest/mypy ◦ sql
▪ sqlfluff
CD(推論基盤の場合) 21 • デプロイの大体の流れ
CT(推論基盤の場合) 22
その他 23 • ロギング • エラー通知(Sentry)・クラスタ監視(Datadog) • Docker Imageの軽量化 (マルチステージビルドやベースイメージの選定
) • CIの設定や軽量化(認証周り/キャッシュ) • 料金削減(リソースのライフサイクル設定 & コンピューティングリソースの最適化 ) けっこう大変😇
作成・運用していく中で感じた基盤のデ メリット 24
最初の構築に時間がかかる 25 • 数ヶ月かかった
アルゴリズムに割く時間が減る 26 • トレードオフとなる
オンボーディングコストが高くなる 27 • ゆっくり習得していただく想定
作成・運用していく中で感じた 基盤のメリット 28
手戻りや調整が少ない 29 • 自チーム内でプロジェクトが完結する
やれることが増える 30
やれることが増える 31 • 具体例
マネージドサービス起因の問題を踏みにくい 32 • マネージドサービスに頼りすぎていないので、自分達ではどうしようも ないという問題を「少し」避けやすい
所感 33 いろんな仕組みの変遷を経て、GCP基盤を作るに至りました。 最初の基盤は小さく作ることをおすすめします。
まとめ 34
まとめ 35
最後に 36
弊社の取り組みについて 37 その他の事例など、社内ブログpixiv insideに掲載しております
積極採用中!!! 38 MLOps人材・機械学習アルゴリズム人材を募集しています • アルバイト • 新卒 • 中途 •
副業 (夜・休日での作業可) カジュアル面談も受け付けております!
ご清聴 ありがとうございました 39