Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ピクシブにおける機械学習基盤
Search
sugakoji
June 13, 2023
Technology
0
590
ピクシブにおける機械学習基盤
第31回MLOps 勉強会で発表を行った「ピクシブ株式会社における機械学習基盤」の資料になります。
sugakoji
June 13, 2023
Tweet
Share
More Decks by sugakoji
See All by sugakoji
ピクシブの機械学習基盤 (PIXIV MEETUP 2023版)
sugakoji
0
1k
Other Decks in Technology
See All in Technology
DevRelの始め方
moongift
PRO
2
400
LINEヤフーのフロントエンド組織・体制の紹介
lycorp_recruit_jp
1
1.2k
20240912 JJUGナイトセミナー
mii1004
0
140
どこよりも遅めなWinActor Ver.7.5.0 新機能紹介
tamai_63
0
210
AIで変わるテスト自動化:最新ツールの多様なアプローチ/ 20240910 Takahiro Kaneyama
shift_evolve
0
250
エムスリーエビデンス創出プロダクトチーム紹介資料 / Introduction of M3 Create Evidence Team
m3_engineering
0
100
ついに出た!OpenAIの最新モデル「o1」って何がすごいの?
minorun365
PRO
3
1.3k
言葉は感情の近似値である。その感情と言葉の誤差を最小化しよう ~コミュニケーションにおけるアナログ/デジタル変換の課題に立ち向かう~
nktamago
0
250
OSTという文化を組織に根付かせてみた
sansantech
PRO
2
430
グイグイ系QAマネージャーの仕事
sadonosake
0
360
Creative UIs with Compose: DroidKaigi 2024
chrishorner
1
610
不動産売買取引におけるAIの可能性とプロダクトでのAI活用
zabio3
0
270
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
31
6.2k
GitHub's CSS Performance
jonrohan
1030
450k
Agile that works and the tools we love
rasmusluckow
327
20k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
26
1.9k
Fantastic passwords and where to find them - at NoRuKo
philnash
48
2.8k
Designing the Hi-DPI Web
ddemaree
278
34k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
24
610
The Power of CSS Pseudo Elements
geoffreycrofte
71
5.3k
Building Better People: How to give real-time feedback that sticks.
wjessup
359
19k
Building Your Own Lightsaber
phodgson
101
6k
How GitHub (no longer) Works
holman
310
140k
Robots, Beer and Maslow
schacon
PRO
157
8.2k
Transcript
ピクシブにおける 機械学習基盤 sugasuga 1
自己紹介 2
sugasuga 3 所属:ピクシブ株式会社 仕事:機械学習チームでエンジニア サブで採用・広報 趣味:最近はトレーニング
ピクシブとは? 4 • 約16サービス イラスト・マンガ・小説の SNS クリエイター支援 創作系メディア マンガ家支援 マンガサービス
EC 3Dモデル作成 イラスト勉強 ネット百科事典 グッズ作成 3Dモデル 運用広告 マンガアプリ ドローツール 画像変換 小説サービス
機械学習チームの特徴 5 • 幅広いタスクをチームで遂行
今日話す内容 6
主に3つ話します 7
伝えたいメッセージ 8
機械学習基盤の紹介 9
GCPバッチ基盤 10 • GPU・CPUリソースを必要分だけ確保して学習を行う
GCPオンライン推論基盤 11 • オンプレ環境と繋いで推論結果を返す
機械学習基盤の作成に 必要だった技術 12
インフラ管理 13 • terraformを使って各種GCPリソースの作成ができる
インフラ管理 14 • 実際のterraformファイル(一部)
インフラ管理 15 • 作成するリソースたくさんある
GKE 16 • 概念理解が必要
GKE 17 • 実際のマニフェスト (kubernetes設定ファイル)
GKE 18 • 環境管理をDRYに行えるkustomize
認証周り(推論基盤の場合) 19 • IAP(リバースプロキシ) 使って特定のアクセスのみ許可
CI整備 20 • コーディングスタイル統一・テスト・型チェック ◦ python ▪ flake8/black/isort/pytest/mypy ◦ sql
▪ sqlfluff
CD(推論基盤の場合) 21 • デプロイの大体の流れ
CT(推論基盤の場合) 22
その他 23 • ロギング • エラー通知(Sentry)・クラスタ監視(Datadog) • Docker Imageの軽量化 (マルチステージビルドやベースイメージの選定
) • CIの設定や軽量化(認証周り/キャッシュ) • 料金削減(リソースのライフサイクル設定 & コンピューティングリソースの最適化 ) けっこう大変😇
作成・運用していく中で感じた基盤のデ メリット 24
最初の構築に時間がかかる 25 • 数ヶ月かかった
アルゴリズムに割く時間が減る 26 • トレードオフとなる
オンボーディングコストが高くなる 27 • ゆっくり習得していただく想定
作成・運用していく中で感じた 基盤のメリット 28
手戻りや調整が少ない 29 • 自チーム内でプロジェクトが完結する
やれることが増える 30
やれることが増える 31 • 具体例
マネージドサービス起因の問題を踏みにくい 32 • マネージドサービスに頼りすぎていないので、自分達ではどうしようも ないという問題を「少し」避けやすい
所感 33 いろんな仕組みの変遷を経て、GCP基盤を作るに至りました。 最初の基盤は小さく作ることをおすすめします。
まとめ 34
まとめ 35
最後に 36
弊社の取り組みについて 37 その他の事例など、社内ブログpixiv insideに掲載しております
積極採用中!!! 38 MLOps人材・機械学習アルゴリズム人材を募集しています • アルバイト • 新卒 • 中途 •
副業 (夜・休日での作業可) カジュアル面談も受け付けております!
ご清聴 ありがとうございました 39