Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ピクシブの機械学習基盤 (PIXIV MEETUP 2023版)
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
sugakoji
October 10, 2023
Programming
0
1.5k
ピクシブの機械学習基盤 (PIXIV MEETUP 2023版)
sugakoji
October 10, 2023
Tweet
Share
More Decks by sugakoji
See All by sugakoji
ピクシブにおける機械学習基盤
sugakoji
0
730
Other Decks in Programming
See All in Programming
CSC307 Lecture 06
javiergs
PRO
0
690
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
300
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
150
Claude Codeと2つの巻き戻し戦略 / Two Rewind Strategies with Claude Code
fruitriin
0
150
dchart: charts from deck markup
ajstarks
3
1k
今から始めるClaude Code超入門
448jp
8
9.1k
AgentCoreとHuman in the Loop
har1101
5
250
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
480
NetBSD+Raspberry Piで 本物のPSGを鳴らすデモを OSC駆動の7日間で作った話 / OSC2026Osaka
tsutsui
1
100
並行開発のためのコードレビュー
miyukiw
1
1.3k
Python’s True Superpower
hynek
0
110
「ブロックテーマでは再現できない」は本当か?
inc2734
0
1.1k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
Visualization
eitanlees
150
17k
How STYLIGHT went responsive
nonsquared
100
6k
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
230
The Power of CSS Pseudo Elements
geoffreycrofte
80
6.2k
Optimizing for Happiness
mojombo
379
71k
Building AI with AI
inesmontani
PRO
1
710
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
The SEO Collaboration Effect
kristinabergwall1
0
360
Evolving SEO for Evolving Search Engines
ryanjones
0
130
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
Transcript
pixiv.inc ピクシブ 機械学習基盤 @sugasuga
Profile sugasuga 機械学習チームでエンジニア サブで採用・広報 最近 趣味 トレーニング
今日 お話しすること
話すこと
なぜ機械学習基盤が 必要か?
活用されている場面 違反検知 レコメンド 広告 3D etc..
トップページ@ pixiv
関連作品 @ pixiv
レコメンド @ pixivFANBOX
他にも
1ヶ月間 レコメンド表示件数 ?
110億!!
大規模データ 投稿作品総数 1.3億件 総登録ユーザ数 9,800万人 月間レコメンド表示件数 110億件
課題 大規模なデータ 効率的な処理 機械学習サービス 展開 しやすさ 効率的な開発
機械学習基盤 について
1. GCPバッチ基盤
必要分だけリソース確保できる
例: レコメンドバッチ
大規模データを 効率的に処理できるように なりました
2. リアルタイム推論基盤
数秒以内にレスポンスを返す
例:タグ おすすめ機能
機械学習サービスを 展開しやすくなりました
3. ノートブック開発環境
ノートブック開発環境
例:リソース選択が自由
効率的に開発が 行えるようになりました
全部移行したわけで ないです 紹介できていない既存 便利な仕組みも 資産として活用しています
基盤で使われている 技術
ど ように インフラ管理を行うか?
インフラ管理 社内でノウハウあるしterraformで良さそう
どうやって認証を行うか?
認証 特定 アクセス み許可したい ?
認証 IAPぴったりじゃん!!
なんでGKEを 使っている ?
GKE 管理 大変 でも、、 ポータブルである必要があった 一部 機能がCloud Runで 使えなかった
ど ようにk8s マニフェストを 管理しよう?
Kubernetes 大量 yamlファイルが爆誕
Kubernetes kustomizeでDRYに環境管理!
そ 他 • ワークフローツール 選定 • エラー通知(Sentry)・クラスタ監視(Datadog) • CI&CD設定や軽量化 •
CT(機械学習特有 継続的学習)について
運用してみて感じた メリデメ
運用してみた感じた メリット
チーム内でプロジェクトが完結
やれることが増える
マネージドサービス 固有 問題を避けやすい マネージドサービスに頼りすぎていない で、 自分達で どうしようもないという問題を 「少し」避けやすい
運用してみた感じた デメリット
機械学習領域に割く時間が減る
オンボーディングコストが高い
基盤を作って良かったと感じ ています
さいごに
さいごに 現在GCPで機械学習基盤を構築しています 今後も、ユーザーやクリエイター ために、 機械学習技術/基盤を活用していきます
他 取り組みについて