Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
Search
sz_dr
October 19, 2016
Technology
0
240
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
TokyoTech LT (2016/10/19)で発表した資料です
sz_dr
October 19, 2016
Tweet
Share
More Decks by sz_dr
See All by sz_dr
Vespaを利用したテクいベクトル検索
szdr
3
590
ヤフーにおける機械学習検索ランキングの取り組み
szdr
11
16k
RecSys 2019 論文読み会 発表資料
szdr
1
1.2k
E-Commerce検索におけるランキング研究
szdr
1
840
ランク学習と偽負例化合物を用いたバーチャルスクリーニング
szdr
0
510
Other Decks in Technology
See All in Technology
UDDのススメ - 拡張版 -
maguroalternative
1
550
20250807_Kiroと私の反省会
riz3f7
0
230
Foundation Model × VisionKit で実現するローカル OCR
sansantech
PRO
1
370
Amazon S3 Vectorsは大規模ベクトル検索を低コスト化するサーバーレスなベクトルデータベースだ #jawsugsaga / S3 Vectors As A Serverless Vector Database
quiver
1
530
ZOZOTOWNの大規模マーケティングメール配信を支えるアーキテクチャ
zozotech
PRO
0
340
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
160
ファッションコーディネートアプリ「WEAR」における、Vertex AI Vector Searchを利用したレコメンド機能の開発・運用で得られたノウハウの紹介
zozotech
PRO
0
330
形式手法特論:位相空間としての並行プログラミング #kernelvm / Kernel VM Study Tokyo 18th
ytaka23
3
1.3k
Amazon GuardDuty での脅威検出:脅威検出の実例から学ぶ
kintotechdev
0
110
プロダクトエンジニアリングで開発の楽しさを拡張する話
barometrica
0
170
家族の思い出を形にする 〜 1秒動画の生成を支えるインフラアーキテクチャ
ojima_h
3
1.1k
React Server ComponentsでAPI不要の開発体験
polidog
PRO
0
250
Featured
See All Featured
Documentation Writing (for coders)
carmenintech
73
5k
The Straight Up "How To Draw Better" Workshop
denniskardys
235
140k
Measuring & Analyzing Core Web Vitals
bluesmoon
8
550
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
31
2.2k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
Automating Front-end Workflow
addyosmani
1370
200k
Build your cross-platform service in a week with App Engine
jlugia
231
18k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
A Modern Web Designer's Workflow
chriscoyier
695
190k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Transcript
東京工業大学 大学院情報理工学研究科 計算工学専攻 秋山研究室 鈴木 翔吾 Convolutional Neural Networkと RankNetを用いた画像の順序予測
TokyoTech LT 2016/10/19
お前誰よ? 2 鈴木翔吾 / Shogo D. Suzuki @sz_dr • 東京工業大学
大学院情報理工学研究科 計算工学専攻 秋山研究室 • ケモインフォマティクス・機械学習 • メインはPython,たまにC++
今日のお話 3 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測
今日のお話 4 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測 今日お話すること A B C 画像 ♥ @sz_dr A ≻ B ≻ C A ≻ C ≻ B 機械学習で順序を予測
アイデア 5 好み関数 0.9 画像 スコア これが求まると嬉しい 0.5 0.6 0.9
≺ ≺ スコアでソートした結果
好み関数のモデル化 6 好み関数 0.9 画像 スコア (RGB, W, H) =
(3, 80, 80) Convolutional Neural Network : ℝ1×2×3 → ℝ 画像認識の分野で広く用いられているモデル [LeCun+ 98] ※話すと長くなる部分なので, 知らない方は各自調べてみてください
好み関数の最適化 7 好み関数 : ℝ1×2×3 → ℝ @sz_drの好みを反映するように 好み関数のパラメータを学習する 訓練データ
: 9 : 8 ⋮ : 1 損失関数 を最小化するように学習 (Rank Net) ※ と を近づけていくイメージ 好み関数がAをBよりも高く ランク付けする確率 好み関数による画像A, Bの予測スコア Aの方が好きなとき1 Bの方が好きなとき0 同じくらい好きなとき0.5 [Burges+ 05]
学習の流れ 8 Lantisちゃんねるから『TVアニメ「ラブライブ!」先行発表PV』を取得 OpenCVを用いて 顔部分をクリッピング (277枚の顔画像を生成) 各画像にスコアを割り当て(つらい) 9 8 7
6 5 4 3 2 1 Chainer(Deep Learningフレームワーク)を用いて学習
訓練データの予測結果 9 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
訓練データの予測結果 10 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
テストデータの予測 11 訓練データ : 9 : 8 ⋮ : 1
テストデータ 『ラブライブ!』 『ラブライブ!サンシャイン!!』 ※訓練データにテストデータの画像は含まれていないことに注意
テストデータの予測 12 @sz_drによる好み順序 訓練 データ テスト データ
テストデータの予測 13 @sz_drによる好み順序 CNN+RankNetによる予測結果 訓練 データ テスト データ
テストデータの予測 14 CNN+RankNetによる予測結果 ☺ 似ている画像は同じような順位にきている ☹ 予測結果は正しい好み順序をあまり反映していない (訓練データとテストデータで順序傾向が異なるため?)
まとめ 15 やったこと Convolutional Neural NetworkとRankNetを用いた画像の順序予測 応用先は? 漫画の表紙買いとか…広告画像の最適化とか…?? できてないこと •
訓練データを集めるのが大変 (人手による評価が必要) • 評価値のバラエティの考慮 (9段階も必要…?Excellent・Good・Badくらいで良い??) • CNNでは見た目しか考慮できない (キャラクターの性格等をどうやって考慮する…??)