Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
Search
sz_dr
October 19, 2016
Technology
0
260
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
TokyoTech LT (2016/10/19)で発表した資料です
sz_dr
October 19, 2016
Tweet
Share
More Decks by sz_dr
See All by sz_dr
Vespaを利用したテクいベクトル検索
szdr
3
640
ヤフーにおける機械学習検索ランキングの取り組み
szdr
11
16k
RecSys 2019 論文読み会 発表資料
szdr
1
1.2k
E-Commerce検索におけるランキング研究
szdr
1
850
ランク学習と偽負例化合物を用いたバーチャルスクリーニング
szdr
0
530
Other Decks in Technology
See All in Technology
Data Engineering Guide 2025 #data_summit_findy by @Kazaneya_PR / 20251106
kazaneya
PRO
10
2k
窓口業務を生成AIにおまかせ!Bedrock Agent Coreで実現する自治体AIエージェント!
rayofhopejp
0
270
嗚呼、当時の本番環境の状態で AI Agentを再評価したいなぁ...
po3rin
0
240
AI-ready"のための"データ基盤 〜 LLMOpsで事業貢献するための基盤づくり
ismk
0
140
メタプログラミングRuby問題集の活用
willnet
1
480
Copilotの精度を上げる!カスタムプロンプト入門.pdf
ismk
10
2.8k
設計は最強のプロンプト - AI時代に武器にすべきスキルとは?-
kenichirokimura
1
250
AIとの協業で実現!レガシーコードをKotlinらしく生まれ変わらせる実践ガイド
zozotech
PRO
2
370
激動の2025年、Modern Data Stackの最新技術動向
sagara
0
1.2k
QAエンジニアがプロダクト専任で チームの中に入ると。。。?/登壇資料(杉森 太樹)
hacobu
PRO
0
140
ソフトウェアテストのAI活用_ver1.50
fumisuke
0
240
エンジニアにとってコードと並んで重要な「データ」のお話 - データが動くとコードが見える:関数型=データフロー入門
ismk
0
250
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
650
How to Ace a Technical Interview
jacobian
280
24k
Balancing Empowerment & Direction
lara
5
730
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
Thoughts on Productivity
jonyablonski
73
4.9k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Faster Mobile Websites
deanohume
310
31k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
253
22k
Designing Experiences People Love
moore
142
24k
Side Projects
sachag
455
43k
Navigating Team Friction
lara
190
15k
Transcript
東京工業大学 大学院情報理工学研究科 計算工学専攻 秋山研究室 鈴木 翔吾 Convolutional Neural Networkと RankNetを用いた画像の順序予測
TokyoTech LT 2016/10/19
お前誰よ? 2 鈴木翔吾 / Shogo D. Suzuki @sz_dr • 東京工業大学
大学院情報理工学研究科 計算工学専攻 秋山研究室 • ケモインフォマティクス・機械学習 • メインはPython,たまにC++
今日のお話 3 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測
今日のお話 4 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測 今日お話すること A B C 画像 ♥ @sz_dr A ≻ B ≻ C A ≻ C ≻ B 機械学習で順序を予測
アイデア 5 好み関数 0.9 画像 スコア これが求まると嬉しい 0.5 0.6 0.9
≺ ≺ スコアでソートした結果
好み関数のモデル化 6 好み関数 0.9 画像 スコア (RGB, W, H) =
(3, 80, 80) Convolutional Neural Network : ℝ1×2×3 → ℝ 画像認識の分野で広く用いられているモデル [LeCun+ 98] ※話すと長くなる部分なので, 知らない方は各自調べてみてください
好み関数の最適化 7 好み関数 : ℝ1×2×3 → ℝ @sz_drの好みを反映するように 好み関数のパラメータを学習する 訓練データ
: 9 : 8 ⋮ : 1 損失関数 を最小化するように学習 (Rank Net) ※ と を近づけていくイメージ 好み関数がAをBよりも高く ランク付けする確率 好み関数による画像A, Bの予測スコア Aの方が好きなとき1 Bの方が好きなとき0 同じくらい好きなとき0.5 [Burges+ 05]
学習の流れ 8 Lantisちゃんねるから『TVアニメ「ラブライブ!」先行発表PV』を取得 OpenCVを用いて 顔部分をクリッピング (277枚の顔画像を生成) 各画像にスコアを割り当て(つらい) 9 8 7
6 5 4 3 2 1 Chainer(Deep Learningフレームワーク)を用いて学習
訓練データの予測結果 9 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
訓練データの予測結果 10 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
テストデータの予測 11 訓練データ : 9 : 8 ⋮ : 1
テストデータ 『ラブライブ!』 『ラブライブ!サンシャイン!!』 ※訓練データにテストデータの画像は含まれていないことに注意
テストデータの予測 12 @sz_drによる好み順序 訓練 データ テスト データ
テストデータの予測 13 @sz_drによる好み順序 CNN+RankNetによる予測結果 訓練 データ テスト データ
テストデータの予測 14 CNN+RankNetによる予測結果 ☺ 似ている画像は同じような順位にきている ☹ 予測結果は正しい好み順序をあまり反映していない (訓練データとテストデータで順序傾向が異なるため?)
まとめ 15 やったこと Convolutional Neural NetworkとRankNetを用いた画像の順序予測 応用先は? 漫画の表紙買いとか…広告画像の最適化とか…?? できてないこと •
訓練データを集めるのが大変 (人手による評価が必要) • 評価値のバラエティの考慮 (9段階も必要…?Excellent・Good・Badくらいで良い??) • CNNでは見た目しか考慮できない (キャラクターの性格等をどうやって考慮する…??)