Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
Search
sz_dr
October 19, 2016
Technology
0
260
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
TokyoTech LT (2016/10/19)で発表した資料です
sz_dr
October 19, 2016
Tweet
Share
More Decks by sz_dr
See All by sz_dr
Vespaを利用したテクいベクトル検索
szdr
3
660
ヤフーにおける機械学習検索ランキングの取り組み
szdr
11
16k
RecSys 2019 論文読み会 発表資料
szdr
1
1.2k
E-Commerce検索におけるランキング研究
szdr
1
850
ランク学習と偽負例化合物を用いたバーチャルスクリーニング
szdr
0
530
Other Decks in Technology
See All in Technology
Oracle Database@Azure:サービス概要のご紹介
oracle4engineer
PRO
2
190
ExpoのインダストリーブースでみたAWSが見せる製造業の未来
hamadakoji
0
190
シニアソフトウェアエンジニアになるためには
kworkdev
PRO
3
270
SREが取り組むデプロイ高速化 ─ Docker Buildを最適化した話
capytan
0
140
日本Rubyの会: これまでとこれから
snoozer05
PRO
5
230
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
さくらのクラウド開発ふりかえり2025
kazeburo
2
1k
通勤手当申請チェックエージェント開発のリアル
whisaiyo
3
440
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
370
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
130
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
130
SQLだけでマイグレーションしたい!
makki_d
0
1.2k
Featured
See All Featured
WCS-LA-2024
lcolladotor
0
390
Building a A Zero-Code AI SEO Workflow
portentint
PRO
0
190
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
300
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Bash Introduction
62gerente
615
210k
Design in an AI World
tapps
0
99
A designer walks into a library…
pauljervisheath
210
24k
Building AI with AI
inesmontani
PRO
1
570
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Jamie Indigo - Trashchat’s Guide to Black Boxes: Technical SEO Tactics for LLMs
techseoconnect
PRO
0
31
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
34
Transcript
東京工業大学 大学院情報理工学研究科 計算工学専攻 秋山研究室 鈴木 翔吾 Convolutional Neural Networkと RankNetを用いた画像の順序予測
TokyoTech LT 2016/10/19
お前誰よ? 2 鈴木翔吾 / Shogo D. Suzuki @sz_dr • 東京工業大学
大学院情報理工学研究科 計算工学専攻 秋山研究室 • ケモインフォマティクス・機械学習 • メインはPython,たまにC++
今日のお話 3 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測
今日のお話 4 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測 今日お話すること A B C 画像 ♥ @sz_dr A ≻ B ≻ C A ≻ C ≻ B 機械学習で順序を予測
アイデア 5 好み関数 0.9 画像 スコア これが求まると嬉しい 0.5 0.6 0.9
≺ ≺ スコアでソートした結果
好み関数のモデル化 6 好み関数 0.9 画像 スコア (RGB, W, H) =
(3, 80, 80) Convolutional Neural Network : ℝ1×2×3 → ℝ 画像認識の分野で広く用いられているモデル [LeCun+ 98] ※話すと長くなる部分なので, 知らない方は各自調べてみてください
好み関数の最適化 7 好み関数 : ℝ1×2×3 → ℝ @sz_drの好みを反映するように 好み関数のパラメータを学習する 訓練データ
: 9 : 8 ⋮ : 1 損失関数 を最小化するように学習 (Rank Net) ※ と を近づけていくイメージ 好み関数がAをBよりも高く ランク付けする確率 好み関数による画像A, Bの予測スコア Aの方が好きなとき1 Bの方が好きなとき0 同じくらい好きなとき0.5 [Burges+ 05]
学習の流れ 8 Lantisちゃんねるから『TVアニメ「ラブライブ!」先行発表PV』を取得 OpenCVを用いて 顔部分をクリッピング (277枚の顔画像を生成) 各画像にスコアを割り当て(つらい) 9 8 7
6 5 4 3 2 1 Chainer(Deep Learningフレームワーク)を用いて学習
訓練データの予測結果 9 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
訓練データの予測結果 10 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
テストデータの予測 11 訓練データ : 9 : 8 ⋮ : 1
テストデータ 『ラブライブ!』 『ラブライブ!サンシャイン!!』 ※訓練データにテストデータの画像は含まれていないことに注意
テストデータの予測 12 @sz_drによる好み順序 訓練 データ テスト データ
テストデータの予測 13 @sz_drによる好み順序 CNN+RankNetによる予測結果 訓練 データ テスト データ
テストデータの予測 14 CNN+RankNetによる予測結果 ☺ 似ている画像は同じような順位にきている ☹ 予測結果は正しい好み順序をあまり反映していない (訓練データとテストデータで順序傾向が異なるため?)
まとめ 15 やったこと Convolutional Neural NetworkとRankNetを用いた画像の順序予測 応用先は? 漫画の表紙買いとか…広告画像の最適化とか…?? できてないこと •
訓練データを集めるのが大変 (人手による評価が必要) • 評価値のバラエティの考慮 (9段階も必要…?Excellent・Good・Badくらいで良い??) • CNNでは見た目しか考慮できない (キャラクターの性格等をどうやって考慮する…??)