Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
Search
sz_dr
October 19, 2016
Technology
0
220
Convolutional Neural NetworkとRankNetを用いた画像の順序予測
TokyoTech LT (2016/10/19)で発表した資料です
sz_dr
October 19, 2016
Tweet
Share
More Decks by sz_dr
See All by sz_dr
Vespaを利用したテクいベクトル検索
szdr
3
390
ヤフーにおける機械学習検索ランキングの取り組み
szdr
11
15k
RecSys 2019 論文読み会 発表資料
szdr
1
1.2k
E-Commerce検索におけるランキング研究
szdr
1
800
ランク学習と偽負例化合物を用いたバーチャルスクリーニング
szdr
0
440
Other Decks in Technology
See All in Technology
モバイルアプリ開発未経験者が プロダクト開発に携わるまでに取り組んだこと/nikkei-tech-talk-27-3
nikkei_engineer_recruiting
0
110
AWS re:Invent 2024 予選落ちのBedrockアプデをまとめて解説!
minorun365
PRO
2
210
サービスの拡大に伴うオペレーション課題に立ち向かう / 20241128_cloudsign_pdm
bengo4com
0
760
実践/先取り「入門 Kubernetes Validating/Mutating Admission Policy」 / CloudNative Days Winter 2024
pfn
PRO
0
120
JAWS UG 青森(弘前)クラウド・AWS入門
hiragahh
0
170
Amazon ECSとCloud Runの相互理解で広げるクラウドネイティブの景色 / Mutually understanding Amazon ECS and Cloud Run
iselegant
17
2k
もう一度、 事業を支えるシステムに。
leveragestech
5
2.9k
Bytebaseで実現する データベース管理の効率化
shogo452
1
110
Windows Server 2025 Pay as you Go ライセンスを試す
murachiakira
0
180
TypeScript100%で作るMovable Typeプラグイン
usualoma
2
230
プルリクが全てじゃない!実は喜ばれるOSS貢献の方法8選
tkikuc
12
1.5k
もし大規模障害が、10分で解決できたら?
masaaki_k
0
130
Featured
See All Featured
A Modern Web Designer's Workflow
chriscoyier
693
190k
Building Flexible Design Systems
yeseniaperezcruz
327
38k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Faster Mobile Websites
deanohume
305
30k
Site-Speed That Sticks
csswizardry
0
75
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
33
1.9k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
31
2.7k
How STYLIGHT went responsive
nonsquared
95
5.2k
Done Done
chrislema
181
16k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Transcript
東京工業大学 大学院情報理工学研究科 計算工学専攻 秋山研究室 鈴木 翔吾 Convolutional Neural Networkと RankNetを用いた画像の順序予測
TokyoTech LT 2016/10/19
お前誰よ? 2 鈴木翔吾 / Shogo D. Suzuki @sz_dr • 東京工業大学
大学院情報理工学研究科 計算工学専攻 秋山研究室 • ケモインフォマティクス・機械学習 • メインはPython,たまにC++
今日のお話 3 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測
今日のお話 4 ♥ 研究でやってること A B C A ≻ B
≻ C A ≻ C ≻ B 化合物 タンパク質 機械学習で順序を予測 今日お話すること A B C 画像 ♥ @sz_dr A ≻ B ≻ C A ≻ C ≻ B 機械学習で順序を予測
アイデア 5 好み関数 0.9 画像 スコア これが求まると嬉しい 0.5 0.6 0.9
≺ ≺ スコアでソートした結果
好み関数のモデル化 6 好み関数 0.9 画像 スコア (RGB, W, H) =
(3, 80, 80) Convolutional Neural Network : ℝ1×2×3 → ℝ 画像認識の分野で広く用いられているモデル [LeCun+ 98] ※話すと長くなる部分なので, 知らない方は各自調べてみてください
好み関数の最適化 7 好み関数 : ℝ1×2×3 → ℝ @sz_drの好みを反映するように 好み関数のパラメータを学習する 訓練データ
: 9 : 8 ⋮ : 1 損失関数 を最小化するように学習 (Rank Net) ※ と を近づけていくイメージ 好み関数がAをBよりも高く ランク付けする確率 好み関数による画像A, Bの予測スコア Aの方が好きなとき1 Bの方が好きなとき0 同じくらい好きなとき0.5 [Burges+ 05]
学習の流れ 8 Lantisちゃんねるから『TVアニメ「ラブライブ!」先行発表PV』を取得 OpenCVを用いて 顔部分をクリッピング (277枚の顔画像を生成) 各画像にスコアを割り当て(つらい) 9 8 7
6 5 4 3 2 1 Chainer(Deep Learningフレームワーク)を用いて学習
訓練データの予測結果 9 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
訓練データの予測結果 10 好み関数を正しく学習できているか確認 9 8 7 6 5 4 3
2 1
テストデータの予測 11 訓練データ : 9 : 8 ⋮ : 1
テストデータ 『ラブライブ!』 『ラブライブ!サンシャイン!!』 ※訓練データにテストデータの画像は含まれていないことに注意
テストデータの予測 12 @sz_drによる好み順序 訓練 データ テスト データ
テストデータの予測 13 @sz_drによる好み順序 CNN+RankNetによる予測結果 訓練 データ テスト データ
テストデータの予測 14 CNN+RankNetによる予測結果 ☺ 似ている画像は同じような順位にきている ☹ 予測結果は正しい好み順序をあまり反映していない (訓練データとテストデータで順序傾向が異なるため?)
まとめ 15 やったこと Convolutional Neural NetworkとRankNetを用いた画像の順序予測 応用先は? 漫画の表紙買いとか…広告画像の最適化とか…?? できてないこと •
訓練データを集めるのが大変 (人手による評価が必要) • 評価値のバラエティの考慮 (9段階も必要…?Excellent・Good・Badくらいで良い??) • CNNでは見た目しか考慮できない (キャラクターの性格等をどうやって考慮する…??)