Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Benchmark of Open Source Tools for Machine Le...
Search
szilard
July 02, 2017
1
320
A Benchmark of Open Source Tools for Machine Learning from R - UseR! 2017 Conference - Brussels, July, 2007
szilard
July 02, 2017
Tweet
Share
More Decks by szilard
See All by szilard
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Data Con LA - Oct 2020
szilard
0
200
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - Albuquerque Machine Learning Meetup (Online) - Aug 2020
szilard
0
150
Better than Deep Learning: Gradient Boosting Machines (GBM) - eRum conference - invited talk - June 2020
szilard
0
130
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - LA Data Science Meetup - February 2020
szilard
0
120
A Random Walk in Data Science and Machine Learning in Practice - CEU, Business Analytics Masters - Budapest, Febr 2020
szilard
0
310
Better than My Meetup/Conference Talks: Going Deeper in Various GBM Topics - GBM Advanced Workshop - Budapest, Nov 2019
szilard
0
87
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Budapest BI Forum, Budapest, Nov 2019
szilard
0
150
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - LA Data Science Meetup - Playa Vista, August 2019
szilard
0
130
Better than Deep Learning: Gradient Boosting Machines (GBM) / 2019 edition - Budapest R and Data Science Meetups - Budapest, June 2019
szilard
0
99
Featured
See All Featured
The Hidden Cost of Media on the Web [PixelPalooza 2025]
tammyeverts
1
97
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
How GitHub (no longer) Works
holman
316
140k
It's Worth the Effort
3n
187
29k
Building a Scalable Design System with Sketch
lauravandoore
463
34k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Side Projects
sachag
455
43k
The Cult of Friendly URLs
andyhume
79
6.7k
Transcript
A Benchmark of Open Source Tools for Machine Learning from
R Szilárd Pafka, PhD Chief Scientist, Epoch useR! 2017 Conference Brussels, July 2017
None
Disclaimer: I am not representing my employer (Epoch) in this
talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk
None
None
None
None
None
None
None
binary classification, 10M records numeric & categorical features, non-sparse
http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf http://lowrank.net/nikos/pubs/empirical.pdf
http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf http://lowrank.net/nikos/pubs/empirical.pdf
None
None
None
None
EC2
n = 10K, 100K, 1M, 10M, 100M Training time RAM
usage AUC CPU % by core read data, pre-process, score test data
n = 10K, 100K, 1M, 10M, 100M Training time RAM
usage AUC CPU % by core read data, pre-process, score test data
None
None
None
None
None
None
None
10x
None
None
None
None
None
http://datascience.la/benchmarking-random-forest-implementations/#comment-53599
None
None
None
None
None
None
Best linear: 71.1
None
None
learn_rate = 0.1, max_depth = 6, n_trees = 300 learn_rate
= 0.01, max_depth = 16, n_trees = 1000
None
None
None
None
None
None
None
...
None
None
None
None
None
None
None
None
None
None
None
R++
None
None
None
None
None
None
None
None
None
None
None
None