Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
A Benchmark of Open Source Tools for Machine Le...
Search
szilard
July 02, 2017
1
320
A Benchmark of Open Source Tools for Machine Learning from R - UseR! 2017 Conference - Brussels, July, 2007
szilard
July 02, 2017
Tweet
Share
More Decks by szilard
See All by szilard
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Data Con LA - Oct 2020
szilard
0
190
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - Albuquerque Machine Learning Meetup (Online) - Aug 2020
szilard
0
130
Better than Deep Learning: Gradient Boosting Machines (GBM) - eRum conference - invited talk - June 2020
szilard
0
120
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - LA Data Science Meetup - February 2020
szilard
0
110
A Random Walk in Data Science and Machine Learning in Practice - CEU, Business Analytics Masters - Budapest, Febr 2020
szilard
0
300
Better than My Meetup/Conference Talks: Going Deeper in Various GBM Topics - GBM Advanced Workshop - Budapest, Nov 2019
szilard
0
76
Gradient Boosting Machines (GBM): From Zero to Hero (with R and Python Code) - Budapest BI Forum, Budapest, Nov 2019
szilard
0
150
Make Machine Learning Boring Again: Best Practices for Using Machine Learning in Businesses - LA Data Science Meetup - Playa Vista, August 2019
szilard
0
120
Better than Deep Learning: Gradient Boosting Machines (GBM) / 2019 edition - Budapest R and Data Science Meetups - Budapest, June 2019
szilard
0
94
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
530
Building Adaptive Systems
keathley
43
2.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.1k
Context Engineering - Making Every Token Count
addyosmani
3
62
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
139
34k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Gamification - CAS2011
davidbonilla
81
5.4k
Visualization
eitanlees
148
16k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Transcript
A Benchmark of Open Source Tools for Machine Learning from
R Szilárd Pafka, PhD Chief Scientist, Epoch useR! 2017 Conference Brussels, July 2017
None
Disclaimer: I am not representing my employer (Epoch) in this
talk I cannot confirm nor deny if Epoch is using any of the methods, tools, results etc. mentioned in this talk
None
None
None
None
None
None
None
binary classification, 10M records numeric & categorical features, non-sparse
http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf http://lowrank.net/nikos/pubs/empirical.pdf
http://www.cs.cornell.edu/~alexn/papers/empirical.icml06.pdf http://lowrank.net/nikos/pubs/empirical.pdf
None
None
None
None
EC2
n = 10K, 100K, 1M, 10M, 100M Training time RAM
usage AUC CPU % by core read data, pre-process, score test data
n = 10K, 100K, 1M, 10M, 100M Training time RAM
usage AUC CPU % by core read data, pre-process, score test data
None
None
None
None
None
None
None
10x
None
None
None
None
None
http://datascience.la/benchmarking-random-forest-implementations/#comment-53599
None
None
None
None
None
None
Best linear: 71.1
None
None
learn_rate = 0.1, max_depth = 6, n_trees = 300 learn_rate
= 0.01, max_depth = 16, n_trees = 1000
None
None
None
None
None
None
None
...
None
None
None
None
None
None
None
None
None
None
None
R++
None
None
None
None
None
None
None
None
None
None
None
None