Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
Search
taisei hatakeyama
August 02, 2018
Technology
2
96
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
・簡単に概略レベルで理解する機械学習
・機械学習のいく末は
・colaboratoryを使った顔認識のハンズオン
・アプリを作ってみた話
taisei hatakeyama
August 02, 2018
Tweet
Share
More Decks by taisei hatakeyama
See All by taisei hatakeyama
NoCode勉強会
taihatake12
0
2k
非エンジニアの私が機械学習エンジニアになった話
taihatake12
1
3.6k
入門 量子コンピュータの世界
taihatake12
0
82
Other Decks in Technology
See All in Technology
IPv6-mostly field report from RubyKaigi 2026
sorah
0
230
Data Hubグループ 紹介資料
sansan33
PRO
0
2.3k
その意思決定、まだ続けるんですか? ~痛みを超えて未来を作る、AI時代の撤退とピボットの技術~
applism118
45
25k
学術的根拠から読み解くNotebookLMの音声活用法
shukob
1
540
AI時代のインシデント対応 〜時代を切り抜ける、組織アーキテクチャ〜
jacopen
4
170
DGX SparkでローカルLLMをLangChainで動かした話
ruzia
1
160
.NET 10 のパフォーマンス改善
nenonaninu
2
1.8k
Symfony AI in Action
el_stoffel
2
250
私のRails開発環境
yahonda
0
130
プラットフォームエンジニアリングとは何であり、なぜプラットフォームエンジニアリングなのか
doublemarket
1
430
名刺メーカーDevグループ 紹介資料
sansan33
PRO
0
970
Claude Code はじめてガイド -1時間で学べるAI駆動開発の基本と実践-
oikon48
22
12k
Featured
See All Featured
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
26
3.2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Visualization
eitanlees
150
16k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Code Reviewing Like a Champion
maltzj
527
40k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
BBQ
matthewcrist
89
9.9k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Code Review Best Practice
trishagee
73
19k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
Transcript
学生・社会人の居残り勉強 必修科目:機械学習を理解しよう 2018/08/02 Lightning Talk Taisei Hatakeyama Machine Learning &
Web App Engineer
自己紹介 新卒でITコンサルタント 2015年 エンジニアになることを決意 2018年 アプリエンジニアとしてスタート 別会社で機械学習エンジニアに 4月 6月 大学ではマーケティング専攻
2011年 経歴 基本情報 name 畠山 大世 hobby 読書(漫画/ビジネス書) 乃木坂46 ゴシップガール sports スキー テニス ゴルフ
経験や勘、考えて決断している 1. 機械学習は必修科目 機械学習とは、機械が優先度づけすること! 人間 機械 大量のデータを計算し、特徴を探し出す 必要 A 不要
B う〜ん C
1. 機械学習は必修科目 機械学習ができるのは分類と予測! 予測 分類 データの特徴を見つけ分ける ※もちろん、分類する観点は様々 ・全部、違う図形 ・角の数 ・図形という括りですべて同じ
過去のデータと近しい結果を出す ※もちろん、比較を間違うと ・予測が大ハズレなんてことも
1. 機械学習は必修科目 機械学習が使われている身近なサービス カスタマーサポート マーケティング ライター/メディア 動画 エンジニア
1. 機械学習は必修科目 機械学習が使われるまでの流れ 目的 データ 収集 データ 抽出 モデル 作成
検証 マッチング 精度向上 行動ログ 個人情報 絞る 整理 アルゴリズム マッチング 精度を観測 マッチングビジネスの場合 概要
Big Query ML SQLを書くだけで、モデルが作れる 1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 最近では、マーケッターやビジネスサイドの方も「SQLなら書ける」というのは多い!
1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 目的 データ 収集 データ 抽出 モデル 作成
検証 機械学習エンジニア・データサイエンティストが行なっていた “簡単”な部分は一気にBig Queryに置き換わっていく!(難易度の高いものはまだまだ。)
1. 機械学習は必修科目 実装でなく、設計ができることが重要 目的 データ 収集 データ 抽出 モデル 作成
検証 目的を考えられることが重要! そのためには、「何に使えるのか」「どう使えるのか」を理解しよう!
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
3. 機械学習でサービスつくった感想 サービス名は、『Chick Or Bear』 「ひよこ」と「くま」ぐらいは 見分けられる! 「ひよこ」と「くま」どっち!? あなたの画像から判定します!!! Chick
Or Bear コンセプト 内容
3. 機械学習でサービスつくった感想 技術要素/アーキテクチャ PC mobile model Image Analysis Vision API
TensorFlow API API App Engine Vue.js Vuetify axios モデル 試してみたいものを選んでいたら、変な構成になった。。。
⚫ 機械学習は、強力だがツールでしかない! ⚫ APIやSQLといった一般的な技術で機械学習ができる! ⚫ だからこそ、何のために使うかを考えられることが大事! 4. まとめ 目的を考えられる人が結局強い