Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
Search
taisei hatakeyama
August 02, 2018
Technology
2
94
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
・簡単に概略レベルで理解する機械学習
・機械学習のいく末は
・colaboratoryを使った顔認識のハンズオン
・アプリを作ってみた話
taisei hatakeyama
August 02, 2018
Tweet
Share
More Decks by taisei hatakeyama
See All by taisei hatakeyama
NoCode勉強会
taihatake12
0
2k
非エンジニアの私が機械学習エンジニアになった話
taihatake12
1
3.5k
入門 量子コンピュータの世界
taihatake12
0
82
Other Decks in Technology
See All in Technology
KubeCon + CloudNativeCon Japan 2025 Recap by CA
ponkio_o
PRO
0
300
ビズリーチが挑む メトリクスを活用した技術的負債の解消 / dev-productivity-con2025
visional_engineering_and_design
3
7.7k
american airlines®️ USA Contact Numbers: Complete 2025 Support Guide
supportflight
1
110
開発生産性を組織全体の「生産性」へ! 部門間連携の壁を越える実践的ステップ
sudo5in5k
3
7.3k
OPENLOGI Company Profile
hr01
0
67k
関数型プログラミングで 「脳がバグる」を乗り越える
manabeai
1
190
Delta airlines®️ USA Contact Numbers: Complete 2025 Support Guide
airtravelguide
0
340
Flutter向けPDFビューア、pdfrxのpdfium WASM対応について
espresso3389
0
130
オーティファイ会社紹介資料 / Autify Company Deck
autifyhq
10
130k
生まれ変わった AWS Security Hub (Preview) を紹介 #reInforce_osaka / reInforce New Security Hub
masahirokawahara
0
480
敢えて生成AIを使わないマネジメント業務
kzkmaeda
2
450
united airlines ™®️ USA Contact Numbers: Complete 2025 Support Guide
flyunitedhelp
1
340
Featured
See All Featured
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
GraphQLとの向き合い方2022年版
quramy
49
14k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.3k
A better future with KSS
kneath
238
17k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
126
53k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
It's Worth the Effort
3n
185
28k
Optimizing for Happiness
mojombo
379
70k
Transcript
学生・社会人の居残り勉強 必修科目:機械学習を理解しよう 2018/08/02 Lightning Talk Taisei Hatakeyama Machine Learning &
Web App Engineer
自己紹介 新卒でITコンサルタント 2015年 エンジニアになることを決意 2018年 アプリエンジニアとしてスタート 別会社で機械学習エンジニアに 4月 6月 大学ではマーケティング専攻
2011年 経歴 基本情報 name 畠山 大世 hobby 読書(漫画/ビジネス書) 乃木坂46 ゴシップガール sports スキー テニス ゴルフ
経験や勘、考えて決断している 1. 機械学習は必修科目 機械学習とは、機械が優先度づけすること! 人間 機械 大量のデータを計算し、特徴を探し出す 必要 A 不要
B う〜ん C
1. 機械学習は必修科目 機械学習ができるのは分類と予測! 予測 分類 データの特徴を見つけ分ける ※もちろん、分類する観点は様々 ・全部、違う図形 ・角の数 ・図形という括りですべて同じ
過去のデータと近しい結果を出す ※もちろん、比較を間違うと ・予測が大ハズレなんてことも
1. 機械学習は必修科目 機械学習が使われている身近なサービス カスタマーサポート マーケティング ライター/メディア 動画 エンジニア
1. 機械学習は必修科目 機械学習が使われるまでの流れ 目的 データ 収集 データ 抽出 モデル 作成
検証 マッチング 精度向上 行動ログ 個人情報 絞る 整理 アルゴリズム マッチング 精度を観測 マッチングビジネスの場合 概要
Big Query ML SQLを書くだけで、モデルが作れる 1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 最近では、マーケッターやビジネスサイドの方も「SQLなら書ける」というのは多い!
1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 目的 データ 収集 データ 抽出 モデル 作成
検証 機械学習エンジニア・データサイエンティストが行なっていた “簡単”な部分は一気にBig Queryに置き換わっていく!(難易度の高いものはまだまだ。)
1. 機械学習は必修科目 実装でなく、設計ができることが重要 目的 データ 収集 データ 抽出 モデル 作成
検証 目的を考えられることが重要! そのためには、「何に使えるのか」「どう使えるのか」を理解しよう!
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
3. 機械学習でサービスつくった感想 サービス名は、『Chick Or Bear』 「ひよこ」と「くま」ぐらいは 見分けられる! 「ひよこ」と「くま」どっち!? あなたの画像から判定します!!! Chick
Or Bear コンセプト 内容
3. 機械学習でサービスつくった感想 技術要素/アーキテクチャ PC mobile model Image Analysis Vision API
TensorFlow API API App Engine Vue.js Vuetify axios モデル 試してみたいものを選んでいたら、変な構成になった。。。
⚫ 機械学習は、強力だがツールでしかない! ⚫ APIやSQLといった一般的な技術で機械学習ができる! ⚫ だからこそ、何のために使うかを考えられることが大事! 4. まとめ 目的を考えられる人が結局強い