Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
Search
taisei hatakeyama
August 02, 2018
Technology
2
96
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
・簡単に概略レベルで理解する機械学習
・機械学習のいく末は
・colaboratoryを使った顔認識のハンズオン
・アプリを作ってみた話
taisei hatakeyama
August 02, 2018
Tweet
Share
More Decks by taisei hatakeyama
See All by taisei hatakeyama
NoCode勉強会
taihatake12
0
2k
非エンジニアの私が機械学習エンジニアになった話
taihatake12
1
3.6k
入門 量子コンピュータの世界
taihatake12
0
82
Other Decks in Technology
See All in Technology
松尾研LLM講座2025 応用編Day3「軽量化」 講義資料
aratako
3
3k
AWS re:Invent 2025~初参加の成果と学び~
kubomasataka
0
190
投資戦略を量産せよ 2 - マケデコセミナー(2025/12/26)
gamella
0
300
まだ間に合う! Agentic AI on AWSの現在地をやさしく一挙おさらい
minorun365
17
2.7k
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.3k
Connection-based OAuthから学ぶOAuth for AI Agents
flatt_security
0
360
Amazon Connect アップデート! AIエージェントにMCPツールを設定してみた!
ysuzuki
0
130
普段使ってるClaude Skillsの紹介(by Notebooklm)
zerebom
8
2.1k
特別捜査官等研修会
nomizone
0
560
[Data & AI Summit '25 Fall] AIでデータ活用を進化させる!Google Cloudで作るデータ活用の未来
kirimaru
0
3.8k
re:Invent2025 3つの Frontier Agents を紹介 / introducing-3-frontier-agents
tomoki10
0
400
Featured
See All Featured
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
69
Raft: Consensus for Rubyists
vanstee
141
7.3k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
260
sira's awesome portfolio website redesign presentation
elsirapls
0
89
JAMstack: Web Apps at Ludicrous Speed - All Things Open 2022
reverentgeek
1
290
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
A better future with KSS
kneath
240
18k
How to Grow Your eCommerce with AI & Automation
katarinadahlin
PRO
0
75
Reality Check: Gamification 10 Years Later
codingconduct
0
1.9k
Claude Code のすすめ
schroneko
65
200k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
30 Presentation Tips
portentint
PRO
1
170
Transcript
学生・社会人の居残り勉強 必修科目:機械学習を理解しよう 2018/08/02 Lightning Talk Taisei Hatakeyama Machine Learning &
Web App Engineer
自己紹介 新卒でITコンサルタント 2015年 エンジニアになることを決意 2018年 アプリエンジニアとしてスタート 別会社で機械学習エンジニアに 4月 6月 大学ではマーケティング専攻
2011年 経歴 基本情報 name 畠山 大世 hobby 読書(漫画/ビジネス書) 乃木坂46 ゴシップガール sports スキー テニス ゴルフ
経験や勘、考えて決断している 1. 機械学習は必修科目 機械学習とは、機械が優先度づけすること! 人間 機械 大量のデータを計算し、特徴を探し出す 必要 A 不要
B う〜ん C
1. 機械学習は必修科目 機械学習ができるのは分類と予測! 予測 分類 データの特徴を見つけ分ける ※もちろん、分類する観点は様々 ・全部、違う図形 ・角の数 ・図形という括りですべて同じ
過去のデータと近しい結果を出す ※もちろん、比較を間違うと ・予測が大ハズレなんてことも
1. 機械学習は必修科目 機械学習が使われている身近なサービス カスタマーサポート マーケティング ライター/メディア 動画 エンジニア
1. 機械学習は必修科目 機械学習が使われるまでの流れ 目的 データ 収集 データ 抽出 モデル 作成
検証 マッチング 精度向上 行動ログ 個人情報 絞る 整理 アルゴリズム マッチング 精度を観測 マッチングビジネスの場合 概要
Big Query ML SQLを書くだけで、モデルが作れる 1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 最近では、マーケッターやビジネスサイドの方も「SQLなら書ける」というのは多い!
1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 目的 データ 収集 データ 抽出 モデル 作成
検証 機械学習エンジニア・データサイエンティストが行なっていた “簡単”な部分は一気にBig Queryに置き換わっていく!(難易度の高いものはまだまだ。)
1. 機械学習は必修科目 実装でなく、設計ができることが重要 目的 データ 収集 データ 抽出 モデル 作成
検証 目的を考えられることが重要! そのためには、「何に使えるのか」「どう使えるのか」を理解しよう!
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
3. 機械学習でサービスつくった感想 サービス名は、『Chick Or Bear』 「ひよこ」と「くま」ぐらいは 見分けられる! 「ひよこ」と「くま」どっち!? あなたの画像から判定します!!! Chick
Or Bear コンセプト 内容
3. 機械学習でサービスつくった感想 技術要素/アーキテクチャ PC mobile model Image Analysis Vision API
TensorFlow API API App Engine Vue.js Vuetify axios モデル 試してみたいものを選んでいたら、変な構成になった。。。
⚫ 機械学習は、強力だがツールでしかない! ⚫ APIやSQLといった一般的な技術で機械学習ができる! ⚫ だからこそ、何のために使うかを考えられることが大事! 4. まとめ 目的を考えられる人が結局強い