Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
Search
taisei hatakeyama
August 02, 2018
Technology
2
93
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
・簡単に概略レベルで理解する機械学習
・機械学習のいく末は
・colaboratoryを使った顔認識のハンズオン
・アプリを作ってみた話
taisei hatakeyama
August 02, 2018
Tweet
Share
More Decks by taisei hatakeyama
See All by taisei hatakeyama
NoCode勉強会
taihatake12
0
2k
非エンジニアの私が機械学習エンジニアになった話
taihatake12
1
3.4k
入門 量子コンピュータの世界
taihatake12
0
80
Other Decks in Technology
See All in Technology
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
990
データマネジメントのトレードオフに立ち向かう
ikkimiyazaki
3
300
白金鉱業Meetup Vol.17_あるデータサイエンティストのデータマネジメントとの向き合い方
brainpadpr
4
300
株式会社EventHub・エンジニア採用資料
eventhub
0
4.2k
RECRUIT TECH CONFERENCE 2025 プレイベント【高橋】
recruitengineers
PRO
0
120
PL900試験から学ぶ Power Platform 基礎知識講座
kumikeyy
0
120
2.5Dモデルのすべて
yu4u
2
790
速くて安いWebサイトを作る
nishiharatsubasa
9
11k
あれは良かった、あれは苦労したB2B2C型SaaSの新規開発におけるCloud Spanner
hirohito1108
2
370
Platform Engineeringは自由のめまい
nwiizo
4
2k
10分で紹介するAmazon Bedrock利用時のセキュリティ対策 / 10-minutes introduction to security measures when using Amazon Bedrock
hideakiaoyagi
0
180
スクラムのイテレーションを導入してチームの雰囲気がより良くなった話
eccyun
0
110
Featured
See All Featured
Docker and Python
trallard
44
3.3k
How to Ace a Technical Interview
jacobian
276
23k
Designing Experiences People Love
moore
139
23k
How to train your dragon (web standard)
notwaldorf
91
5.8k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
6
550
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Side Projects
sachag
452
42k
How to Think Like a Performance Engineer
csswizardry
22
1.3k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
356
29k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Transcript
学生・社会人の居残り勉強 必修科目:機械学習を理解しよう 2018/08/02 Lightning Talk Taisei Hatakeyama Machine Learning &
Web App Engineer
自己紹介 新卒でITコンサルタント 2015年 エンジニアになることを決意 2018年 アプリエンジニアとしてスタート 別会社で機械学習エンジニアに 4月 6月 大学ではマーケティング専攻
2011年 経歴 基本情報 name 畠山 大世 hobby 読書(漫画/ビジネス書) 乃木坂46 ゴシップガール sports スキー テニス ゴルフ
経験や勘、考えて決断している 1. 機械学習は必修科目 機械学習とは、機械が優先度づけすること! 人間 機械 大量のデータを計算し、特徴を探し出す 必要 A 不要
B う〜ん C
1. 機械学習は必修科目 機械学習ができるのは分類と予測! 予測 分類 データの特徴を見つけ分ける ※もちろん、分類する観点は様々 ・全部、違う図形 ・角の数 ・図形という括りですべて同じ
過去のデータと近しい結果を出す ※もちろん、比較を間違うと ・予測が大ハズレなんてことも
1. 機械学習は必修科目 機械学習が使われている身近なサービス カスタマーサポート マーケティング ライター/メディア 動画 エンジニア
1. 機械学習は必修科目 機械学習が使われるまでの流れ 目的 データ 収集 データ 抽出 モデル 作成
検証 マッチング 精度向上 行動ログ 個人情報 絞る 整理 アルゴリズム マッチング 精度を観測 マッチングビジネスの場合 概要
Big Query ML SQLを書くだけで、モデルが作れる 1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 最近では、マーケッターやビジネスサイドの方も「SQLなら書ける」というのは多い!
1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 目的 データ 収集 データ 抽出 モデル 作成
検証 機械学習エンジニア・データサイエンティストが行なっていた “簡単”な部分は一気にBig Queryに置き換わっていく!(難易度の高いものはまだまだ。)
1. 機械学習は必修科目 実装でなく、設計ができることが重要 目的 データ 収集 データ 抽出 モデル 作成
検証 目的を考えられることが重要! そのためには、「何に使えるのか」「どう使えるのか」を理解しよう!
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
3. 機械学習でサービスつくった感想 サービス名は、『Chick Or Bear』 「ひよこ」と「くま」ぐらいは 見分けられる! 「ひよこ」と「くま」どっち!? あなたの画像から判定します!!! Chick
Or Bear コンセプト 内容
3. 機械学習でサービスつくった感想 技術要素/アーキテクチャ PC mobile model Image Analysis Vision API
TensorFlow API API App Engine Vue.js Vuetify axios モデル 試してみたいものを選んでいたら、変な構成になった。。。
⚫ 機械学習は、強力だがツールでしかない! ⚫ APIやSQLといった一般的な技術で機械学習ができる! ⚫ だからこそ、何のために使うかを考えられることが大事! 4. まとめ 目的を考えられる人が結局強い