$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
Search
taisei hatakeyama
August 02, 2018
Technology
2
96
学生・社会人の居残り勉強 ~必修科目:機械学習を理解しよう~
・簡単に概略レベルで理解する機械学習
・機械学習のいく末は
・colaboratoryを使った顔認識のハンズオン
・アプリを作ってみた話
taisei hatakeyama
August 02, 2018
Tweet
Share
More Decks by taisei hatakeyama
See All by taisei hatakeyama
NoCode勉強会
taihatake12
0
2k
非エンジニアの私が機械学習エンジニアになった話
taihatake12
1
3.6k
入門 量子コンピュータの世界
taihatake12
0
82
Other Decks in Technology
See All in Technology
オープンソースKeycloakのMCP認可サーバの仕様の対応状況 / 20251219 OpenID BizDay #18 LT Keycloak
oidfj
0
170
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
160
Bedrock AgentCore Memoryの新機能 (Episode) を試してみた / try Bedrock AgentCore Memory Episodic functionarity
hoshi7_n
2
1.8k
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
140
AWS運用を効率化する!AWS Organizationsを軸にした一元管理の実践/nikkei-tech-talk-202512
nikkei_engineer_recruiting
0
170
意外と知らない状態遷移テストの世界
nihonbuson
PRO
1
240
ソフトウェアエンジニアとAIエンジニアの役割分担についてのある事例
kworkdev
PRO
0
230
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
TED_modeki_共創ラボ_20251203.pdf
iotcomjpadmin
0
150
障害対応訓練、その前に
coconala_engineer
0
190
20251203_AIxIoTビジネス共創ラボ_第4回勉強会_BP山崎.pdf
iotcomjpadmin
0
130
_第4回__AIxIoTビジネス共創ラボ紹介資料_20251203.pdf
iotcomjpadmin
0
130
Featured
See All Featured
How GitHub (no longer) Works
holman
316
140k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
130
Prompt Engineering for Job Search
mfonobong
0
120
Digital Ethics as a Driver of Design Innovation
axbom
PRO
0
130
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
120
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
230
Discover your Explorer Soul
emna__ayadi
2
1k
Navigating the Design Leadership Dip - Product Design Week Design Leaders+ Conference 2024
apolaine
0
120
Ethics towards AI in product and experience design
skipperchong
1
140
Into the Great Unknown - MozCon
thekraken
40
2.2k
Odyssey Design
rkendrick25
PRO
0
430
Transcript
学生・社会人の居残り勉強 必修科目:機械学習を理解しよう 2018/08/02 Lightning Talk Taisei Hatakeyama Machine Learning &
Web App Engineer
自己紹介 新卒でITコンサルタント 2015年 エンジニアになることを決意 2018年 アプリエンジニアとしてスタート 別会社で機械学習エンジニアに 4月 6月 大学ではマーケティング専攻
2011年 経歴 基本情報 name 畠山 大世 hobby 読書(漫画/ビジネス書) 乃木坂46 ゴシップガール sports スキー テニス ゴルフ
経験や勘、考えて決断している 1. 機械学習は必修科目 機械学習とは、機械が優先度づけすること! 人間 機械 大量のデータを計算し、特徴を探し出す 必要 A 不要
B う〜ん C
1. 機械学習は必修科目 機械学習ができるのは分類と予測! 予測 分類 データの特徴を見つけ分ける ※もちろん、分類する観点は様々 ・全部、違う図形 ・角の数 ・図形という括りですべて同じ
過去のデータと近しい結果を出す ※もちろん、比較を間違うと ・予測が大ハズレなんてことも
1. 機械学習は必修科目 機械学習が使われている身近なサービス カスタマーサポート マーケティング ライター/メディア 動画 エンジニア
1. 機械学習は必修科目 機械学習が使われるまでの流れ 目的 データ 収集 データ 抽出 モデル 作成
検証 マッチング 精度向上 行動ログ 個人情報 絞る 整理 アルゴリズム マッチング 精度を観測 マッチングビジネスの場合 概要
Big Query ML SQLを書くだけで、モデルが作れる 1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 最近では、マーケッターやビジネスサイドの方も「SQLなら書ける」というのは多い!
1. 機械学習は必修科目 機械学習エンジニアの終焉!SQLだけで十分! 目的 データ 収集 データ 抽出 モデル 作成
検証 機械学習エンジニア・データサイエンティストが行なっていた “簡単”な部分は一気にBig Queryに置き換わっていく!(難易度の高いものはまだまだ。)
1. 機械学習は必修科目 実装でなく、設計ができることが重要 目的 データ 収集 データ 抽出 モデル 作成
検証 目的を考えられることが重要! そのためには、「何に使えるのか」「どう使えるのか」を理解しよう!
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
2. 機械学習を体験しよう Colaboratoryを使ってみよう
3. 機械学習でサービスつくった感想 サービス名は、『Chick Or Bear』 「ひよこ」と「くま」ぐらいは 見分けられる! 「ひよこ」と「くま」どっち!? あなたの画像から判定します!!! Chick
Or Bear コンセプト 内容
3. 機械学習でサービスつくった感想 技術要素/アーキテクチャ PC mobile model Image Analysis Vision API
TensorFlow API API App Engine Vue.js Vuetify axios モデル 試してみたいものを選んでいたら、変な構成になった。。。
⚫ 機械学習は、強力だがツールでしかない! ⚫ APIやSQLといった一般的な技術で機械学習ができる! ⚫ だからこそ、何のために使うかを考えられることが大事! 4. まとめ 目的を考えられる人が結局強い